We model TRAPPIST-1planets with multilayer tidal dissipation models to track

I H E R MAL Evo L U I I o N how interior structure and temperature-dependent viscosity shape long-term
thermal evolution. Our results show that tidal heating dominates the inner planets’
OF TRAPPIST-1 PLANETS

energy budgets, can trigger runaway melting, and accelerates atmospheric
outgassing, linking interior dynamics to future atmospheric observations.
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INTRODUCTION METHODOLOGY

o Interior Models: Bayesian inversion yields mass fractions of an iron core, a silicate mantle, and optional ice layers[2,3], using
updated equations of state[4-6].
e Tidal Dissipation: Love numbers calculated for multilayer structures using Maxwell/Andrade rheologies[7-9], including a

e TRAPPIST-1 hosts seven Earth-sized planets
orbiting an M-dwarf star.

* Tidal heating could be the primary source of parameterization for the effects of partial melt[10,11].
energy driving geological activities. e 2D Mantle Convection (CHIC): Allows for detailed investigation of the 2D spatial distribution of tidal dissipation and its effect
e Homogeneous models oversimplify interiors and on mantle dynamics, melt production, and volatile transport, directly linking the interior to atmospheric evolution[12].
underestimate tlda heatlng[1 ] e Case Studies: Mass, Radius, (Stellar composition) Degassing
e We adopt il dels t ' ¢ | Hot inner planet TRAPPIST-1b and
¢ adopt mulitilayer MOdels 1o aptre complex, moderately heated TRAPPIST-1d.
temperature-dependent dissipation and its role in

long-term thermal evolution.
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RADIAL AND LAYERED DISSIPATION PATTERNS

e Dissipation varies strongly with depth(Figure 2 and 3a).

e Peaks often occur at the core-mantle boundary and in ice layers (depending on rheology).

e Liquid layers can decouple the deep interior, suppressing inner dissipation and enhancing outer
dissipation.

e These multilayer results may differ by 2-3 orders of magnitude from homogeneous models
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Figure2. Tidal dissipation patterns for TRAPPIST-1b at the surface and the core-mantle boundary
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THERMAL EVOLUTION

Our models reveal a critical positive feedback mechanism, especially in the inner,
5.00x105 4
tidally heated planets like TRAPPIST-1b. I
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e This drop in viscosity enhances the efficiency of tidal dissipation, generating
even more heat. —
e This feedback loop can lead to runaway melting if heat transport is limited,
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potentially resulting in extensive magma layers and a dramatically different 7000 >—— 500102
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thermal state than previously assumed. R
0OiO . .0.I5 . 110 (I) 560 10100 15|00 20000° 16‘3 10l‘7 1(;‘6 1[;‘5 104 a : . . : ;
Melt Fraction Adiabatic Bulk Modulus (GPa) Tidal Dissipation (W/m*3) 1600 1800 2000 2200 2400
(a) (b) Figure3. The effect of mantle temperature on TRAPPIST-1b's interior and tidal response. (a) Radial profiles
No Tidal Heating With Tidal Heating Partial pressures show that higher temperatures create expanded, low-viscosity partially molten layers. (b) This leads to a
Ssswes. 0020 dramatic increase in total tidal dissipation power, dominated by heating within these mush layers.
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& N2 TIDAL HEATING ACCELERATES ATMOSPHERIC OUTGASSING
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- zones facilitate a more efficient extraction of volatiles (like H,O and CO,) from
" the planet's mantle. As shown in Figure 4, tidal heating significantly
00 05 .0 15 20 accelerates mantle volatile depletion during the first ~1 Gyr of evolution.
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e Secondary atmosphere build-up: Planets with strong tidal heating develop
Figure4. (a) Mantle volatile depletion in TRAPPIST-1d after 1 Gyr of evolution, comparing models without tidal

heating (left) and with tidal heating (right). Yellow-pink regions indicate higher levels of volatile depletion. (b) substantial secondary atmospheres much faster than those without, although
Evolution of atmOSpheriC partlal pressures over time (0-2 Gyr) for N,, H,0, CO,, H,, and CO. the flnal atmospherlc pressure may Converge over Ionger tlmescales
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