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Framework

▶ Which 1D interior structure models of Mars are compatible with different
and complimentary geophysical observables? What can we deduce about
the evolution of Mars’ interior?

▶ We adopt a synergetic strategy in which multiple types of geophysical data
(body wave arrival times, electrical conductivity, Love number k2, moment
of inertia MoI ) are simultaneously inverted to infer the interior structure
models of Mars.

Method

▶ Our models depend on quantities that influence the thermo-chemical
evolution of the planet (Samuel et al., 2019, Drilleau et al., 2022): The
mantle rheology (effective activation energy, volume, reference viscosity),
the initial thermal state (temperature below the lithosphere and core-mantle
boundary temperature), the core radius, the equation of state of the core

▶ We assume Mg# dependent variations of the mantle composition models of
Sanloup et al. (1999) EH45, Taylor (2013) TA, and Yoshizaki &
McDonough (2020) YM

▶ The mantle mineral proportions and elastic properties are computed using
Perple X (Connolly, 2005) employing the thermodynamic formulation and
database of Stixrude & Lithgow-Bertelloni (2021)

▶ We consider models with and without a basal mantle layer (BML) (Samuel
et al., 2023)

▶ Inversion scheme: Bayesian inversion using Monte Carlo Markov chains

Results: Correlation between Mg# and potential temperature
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Figure 1: Correlations between Mg# and potential temperature, and datafit (last column) for non-BML models.
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Figure 2: Correlations between Mg# and potential temperature, and datafit (last column) for BML models.

▶ Models with Mg#<0.72 are not compatible with the MoI
▶ Models inferred with mantle electrical conductivity data favour larger

potential temperatures
▶ Non-BML: Models based on either of the considered mantle composition

with Mg#>0.72 agree with the geophysical data at the same level
▶ BML: Models based on the YM mantle composition are less compatible

with seismic data
▶ BML: The models agree less with electrical conductivity data

Data

▶ Body waves data set of 31 seismic events: P, S, PP, SS, PPP, SSS, pP, sP,
sS, ScS, SKS, Pdiff or PbdiffPcP (Samuel et al., 2023, Drilleau et al., 2024)

▶ k2 Love number and moment of inertia MoI (Konopliv et al., 2020)
▶ 1D electrical conductivity profile (Civet & Tarits, 2014)

Results: Inferred seismic velocity and electrical conductivity profiles
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Figure 3: Output profiles of temperature, electrical conductivity, and VP, considering the TA mantle composition.

▶ non-BML: The mantle electrical conductivity profile of Civet & Tarits
(2014) favours models with thick thermal lithospheres (>800 km)

▶ BML: Models have colder present-day mantle temperatures and thinner
lithospheres, and agree less well with the mantle electrical conductivity
profile of Civet & Tarits (2014)

▶ Models inferred from electrical conductivity data favour larger mantle
temperatures than those inferred body wave arrival times only
⇒ The seismic velocity profiles are shifted toward smaller values

Results: Influence of the thermodynamical database
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Figure 4: Comparison of seismic velocities and mineralogical phase diagrams between SLB11 and SLB21 (Stixrude

Lithgow-Bertelloni, 2011, 2021), considering the TA mantle composition for non-BML models.

▶ All the published models using InSight data rely on the thermodynamical
database of SLB11

▶ The use of SLB21 introduces several differences:
⇒ An additional discontinuity appears below the Moho (∼80 km depth)
⇒ The location/amplitude of seismic discontinuities or velocity gradients
associated with mineralogical phase transitions are significantly modified in
the lower part on the mantle

▶ The datafit is comparable between SLB11 and SLB21!

Main findings and discussion

▶ By using electrical conductivity data, the range of plausible mantle
temperature profiles is reduced and hot mantle profiles are favoured

▶ For BML models, whose temperature at the top of the convecting mantle is
close to the solidus, a good estimation of the solidus is critical

▶ The ambiguity in the interpretation of the slope of the Civet & Tarits
(2014)’s profile can significantly influence model selection

▶ A better knowledge of the depth of the seismic discontinuities in the mantle
associated with mineralogical phase transitions could further help
discriminate between competing interior models


