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Framework Data

» Which 1D interior structure models of Mars are compatible with different » Body waves data set of 31 seismic events: P, S, PP, SS, PPP, SSS, pP, sP,
and complimentary geophysical observables? What can we deduce about sS, ScS, SKS, Pdiff or PbdiffPcP (Samuel et al., 2023, Drilleau et al., 2024)

the evolution of Mars' interior? » ko Love number and moment of inertia Mol (Konopliv et al., 2020)
» 1D electrical conductivity profile (Civet & Tarits, 2014)

» We adopt a synergetic strategy in which multiple types of geophysical data
(body wave arrival times, electrical conductivity, Love number k, moment
of inertia Mol) are simultaneously inverted to infer the interior structure

models of Mars.

Results: Inferred seismic velocity and electrical conductivity profiles
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database of Stixrude & Lithgow-Bertelloni (2021)

» We consider models with and without a basal mantle layer (BML) (Samuel
et al., 2023)

» Inversion scheme: Bayesian inversion using Monte Carlo Markov chains

Figure 3: Output profiles of temperature, electrical conductivity, and Vp, considering the TA| mantle composition.

» non-BML: The mantle electrical conductivity profile of Civet & Tarits
(2014) favours models with thick thermal lithospheres (>800 km)

» BML: Models have colder present-day mantle temperatures and thinner
Results: Correlation between Mg# and potential temperature ithospheres, and agree less well with the mantle electrical conductivity
orofile of Civet & Tarits (2014)

» Models inferred from electrical conductivity data favour larger mantle
temperatures than those inferred body wave arrival times only
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Figure 1: Correlations between Mg# and potential temperature, and datafit (last column) for non-BML models.

BML MODELS
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Lithgow-Bertelloni, 2011, 2021), considering the | TA| mantle composition for non-BML models.
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Figure 2: Correlations between Mg# and potential temperature, and datafit (last column) for BML models. Main findings and discussion

» By using electrical conductivity data, the range of plausible mantle
temperature profiles is reduced and hot mantle profiles are favoured

» Models with Mg#<0.72 are not compatible with the Mol

» Models inferred with mantle electrical conductivity data favour larger
potential temperatures

» Non-BML: Models based on either of the considered mantle composition
with Mg#>0.72 agree with the geophysical data at the same level

» For BML models, whose temperature at the top of the convecting mantle is
close to the solidus, a good estimation of the solidus is critical

» The ambiguity in the interpretation of the slope of the Civet & Tarits
(2014)’s profile can significantly influence model selection

» BML: Models based on the YM mantle composition are less compatible
with seismic data

» A better knowledge of the depth of the seismic discontinuities in the mantle
associated with mineralogical phase transitions could further help
discriminate between competing interior models

» BML: The models agree less with electrical conductivity data




