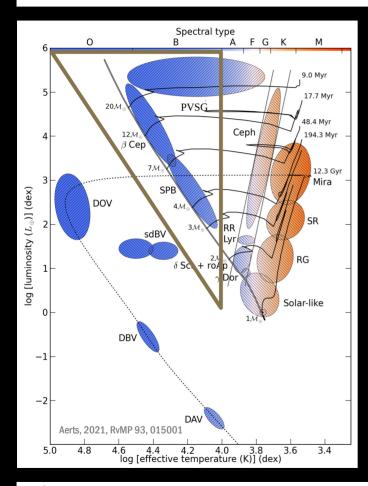
Asteroseismology of OB stars in the space era

What did we learn from the observations?

Peter De Cat


Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels, Belgium

... a very incomplete point of view

Hybrids?

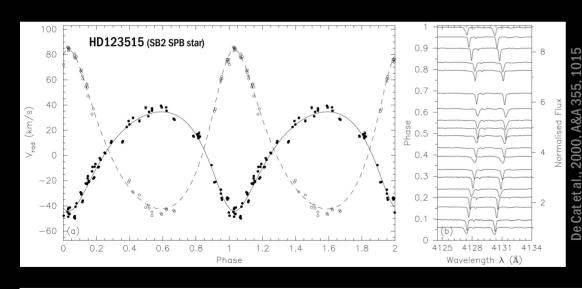
- $\rightarrow \beta$ Cephei stars (β Cep)
 - Low order p and g modes with periods of few hours
- → Slowly Pulsating B stars (SPB)
 - High order g modes with periods of several hours to few days
- → Periodic Variable Supergiants (PVSG)
 - g modes with periods of order of 10 to 100 days
- → Be stars (Be)
 - Rotational modulation and/or Pulsations?
- → Maia variables

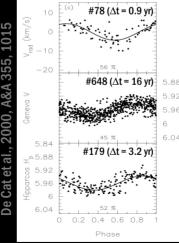
Excitation mechanisms at play

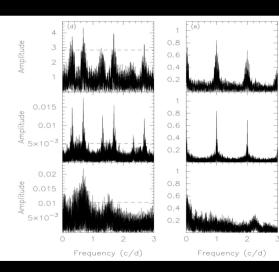
Opacity mechanism operating in Z bump

- → Time series
- → Observed pulsation modes
 - Frequency {
 Degree ℓ
 Azimuthal number m
 - ↓ Modelling

Frequency analysis


Mode identification


- * Multicolour photometry:
- * High-resolution spectroscopy:


method of photometric amplitude ratios and frequency shifts (Dupret et al., 2003, A&A 398, 677)

py: moment method (Aerts, 1992, A&A 266, 294; Briquet & Aerts, 2003, A&A 398, 687)

fourier parameter fit method (Zima, 2006, A&A 455, 227)

- → Time series
- → Observed pulsation modes
 - Frequency (
 - Azimuthal number m

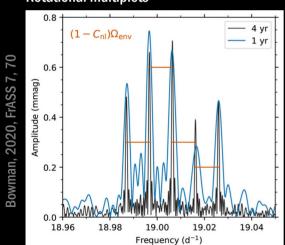
↓ Modelling Frequency analysis

Mode identification

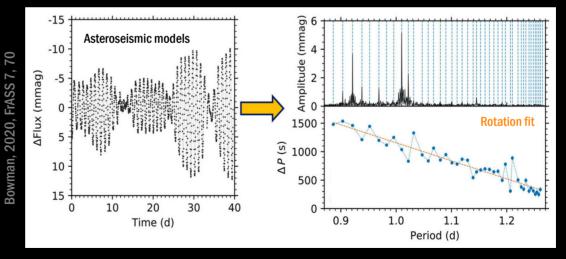
- * Multicolour photometry:
- * High-resolution spectroscopy:

method of photometric amplitude ratios and frequency shifts (Dupret et al., 2003, A&A 398, 677)

moment method (Aerts, 1992, A&A 266, 294; Briquet & Aerts, 2003, A&A 398, 687) fourier parameter fit method (Zima, 2006, A&A 455, 227)



- → Time series
- → Observed pulsation modes
 - Frequency {Degree ℓ
 - Azimuthal number m

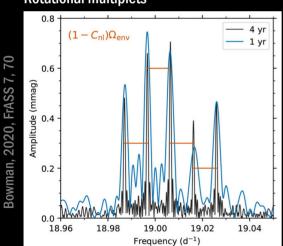

Modelling

Frequency analysis

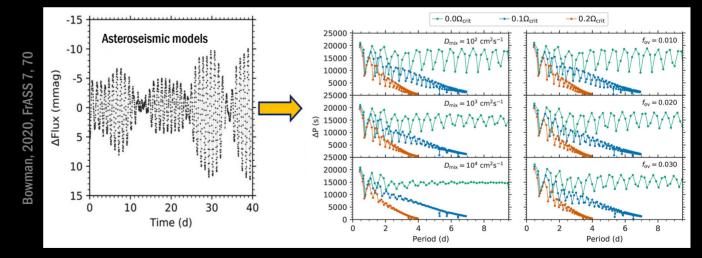
- Mode identification
- * Multicolour photometry:
- method of photometric amplitude ratios and frequency shifts (Dupret et al., 2003, A&A 398, 677)
- * High-resolution spectroscopy: moment method (Aerts, 1992, A&A 266, 294; Briquet & Aerts, 2003, A&A 398, 687) fourier parameter fit method (Zima, 2006, A&A 455, 227)
- → Present day asteroseismic diagnostics
 - Rotational multiplets

g mode period spacing patterns (asymptotic regime)

- → Time series
- → Observed pulsation modes
 - Frequency {Degree ℓ
 - Azimuthal number m


Frequency analysis

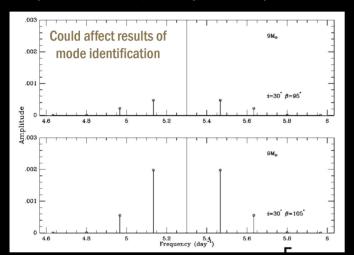
- Mode identification
- * Multicolour photometry:

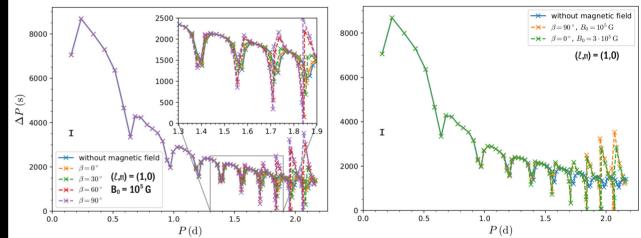

method of photometric amplitude ratios and frequency shifts (Dupret et al., 2003, A&A 398, 677)

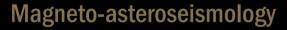
* High-resolution spectroscopy: moment method (Aerts, 1992, A&A 266, 294; Briquet & Aerts, 2003, A&A 398, 687) fourier parameter fit method (Zima, 2006, A&A 455, 227)

- → Present day asteroseismic diagnostics
 - Rotational multiplets

g mode period spacing patterns (asymptotic regime)




Magnetic fields


- → Effects of magnetic field on asteroseismic diagnostics of pulsating stars
 - Magnetic multiplets
 (Shibahashi & Aerts, 2000, ApJ 531, L143)

Ground-based β Cep

(Shibahashi & Aerts, 2000, ApJ 531, L143)

ζCas

(Briquet et al., 2016, A&A 587, A126)

V2052 Oph (Briquet et al., 2012, MNRAS 427, 483)

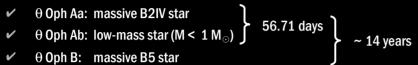
✓ CoRoT

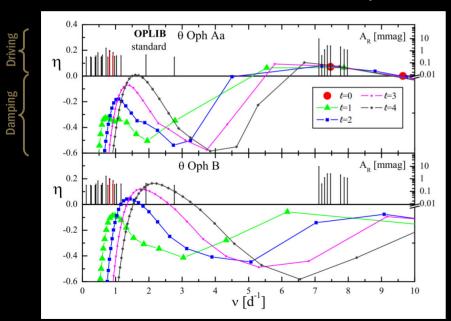
HD43317 (Buysschaert et al., 2018, A&A 616, A148)

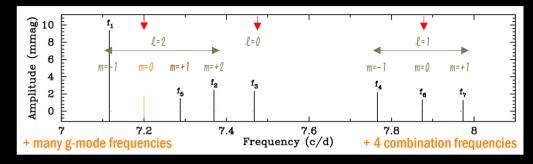
K2

ι Lib (Buysschaert et al., 2018, SF2A Conf., 369)

Talk Neiner: "Magneto-asteroseismology of hot stars" and others






- \rightarrow θ Ophiuchi (Walczak et al., 2019, MNRAS 485, 3544)
 - Known β Cep pulsator with 7 pulsation frequencies

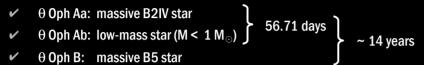
Hybrid pulsator

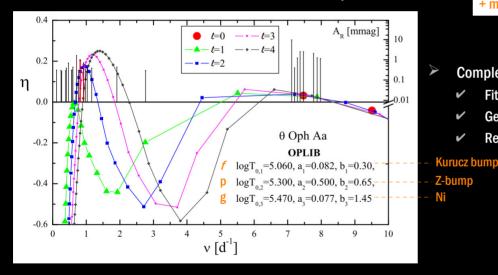
Triple system:

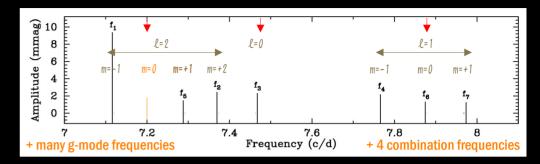
BRITE photometry (2014 UBr; 2016+2017 UBr, BHr, BAb, BLb) SMEI photometry (2003-2010)

- Complex asteroseismology
 - Fitting centroid frequencies
 - Getting the mode instability in the observed frequency range
 - Reproduce the emperical value of f (ratio of the relative bolometric flux to the relative radial displacement)

(cf. Talk Daszyńska-Daszkiewicz)

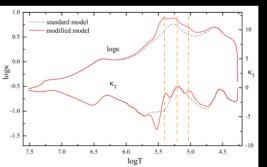





- → θ Ophiuchi (Walczak et al., 2019, MNRAS 485, 3544)
 - \triangleright Known β Cep pulsator with 7 pulsation frequencies

Hybrid pulsator

> Triple system:

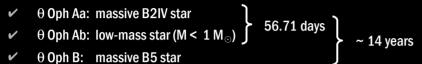


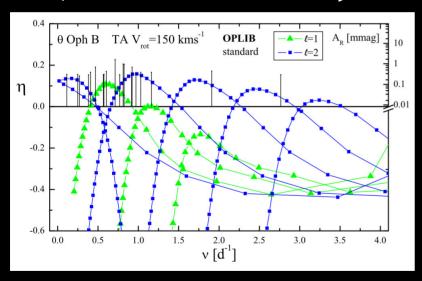
BRITE photometry (2014 UBr; 2016+2017 UBr, BHr, BAb, BLb) SMEI photometry (2003-2010)

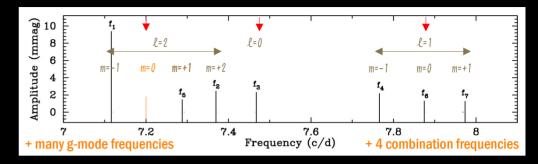
- Complex asteroseismology
- Fitting centroid frequencies
- Getting the mode instability in the observed frequency range
- Reproduce the emperical value of f (ratio of the relative bolometric flux to the relative radial displacement)

(cf. Talk Daszyńska-Daszkiewicz)

Opacity increase needed to excite gmodes (θ Oph Aa)






- \rightarrow θ Ophiuchi (Walczak et al., 2019, MNRAS 485, 3544)
 - \triangleright Known β Cep pulsator with 7 pulsation frequencies

Hybrid pulsator

> Triple system:

BRITE photometry (2014 UBr; 2016+2017 UBr, BHr, BAb, BLb) SMEI photometry (2003-2010)

- Complex asteroseismology
 - Fitting centroid frequencies
 - Getting the mode instability in the observed frequency range
 - Reproduce the emperical value of f (ratio of the relative bolometric flux to the relative radial displacement)

Fast rotation needed to excite gmodes (0 Oph B) Opacity increase needed to excite gmodes (Θ Oph Aa)

- θ Ophiuchi (Walczak et al., 2019, MNRAS 485, 3544)
- **β Centauri** (Pigulski et al., 2016, A&A 588, A55)

Ideal to study influence of

Triple system:

Magnetic field

- β Cen Aa: early B-type star (M = 12.02(13) M_{\odot}), faster rotator (v_{mt} = 200-250 km s⁻¹)
- β Cen Ab: early B-type star (M = 10.58(18) M_{\odot}), slower rotator (v_{rot} = 70-120 km s⁻¹), magnetic

Rotation

- β Cen B: distant, mid B-type star
- 8 g-modes, 9 p-modes, and 2 combination frequencies

Light time effect: attribution to Aa and Ab component inconclusive for most frequencies

> If effects rotation taken into account, no need for

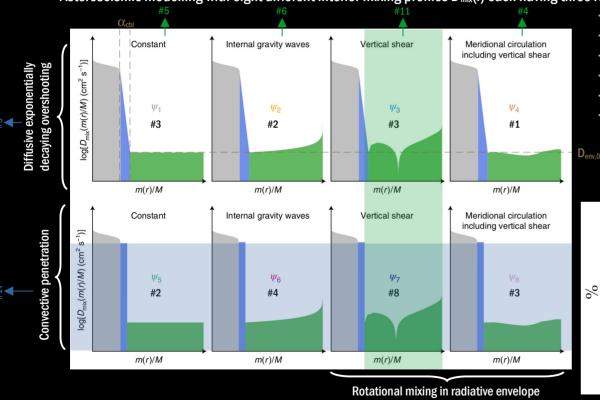

Increase opacity Increase metallicity **Change chemical composition** BRITE photometry (2014, 146d, UBr, BTr, BAb, BLb) BRITE photometry (2014, 27d, BLb) BRITE photometry (2014, 6d, BTr)

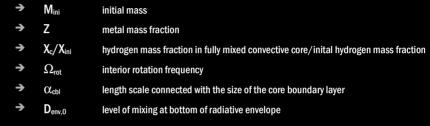
125-220 years

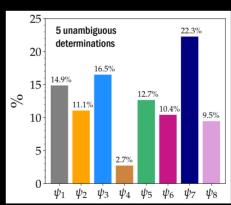
357 days

e=0.81

resolved






Interior mixing profile

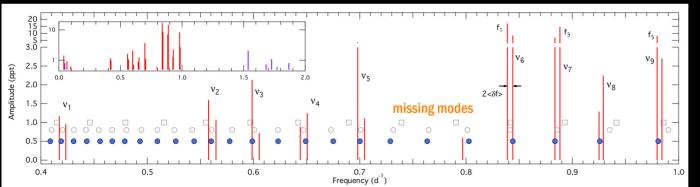
- → Pedersen et al., 2021, NatAs 5, 715
 - Sample of 26 SPB stars showing period spacings patterns from dipole g-modes (~4% of all B stars in the nominal Kepler field of view)
 - Asteroseismic modelling with eight different interior mixing profiles D_{mix}(r) each having three regions (convective core D_{conv}(r), core boundary layer D_{con}(r), radiative envelope D_{env}(r))

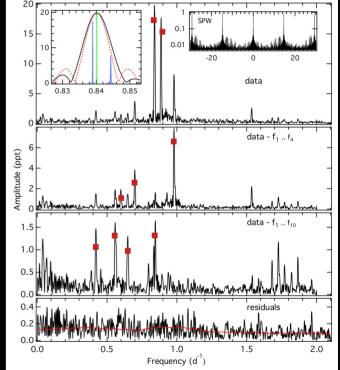
Majority for convective penetration (55%) vertical shear (39%)

Pedersen, 2022, ApJ 930, 94

- Expected helium core masses at end of main-sequence evolution:
 - * underestimated without mixing
 - * increase with initial stellar mass
 - * heavily influenced by amount of envelope mixing
 - cf. Kaiser et al, 2020, MNRAS 496, 1967 Johnston, 2021, A&A 655, A29

Interior rotation profile

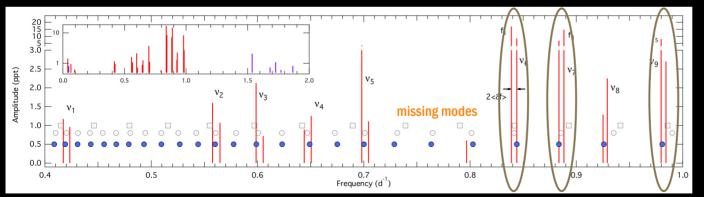

→ HD201433 (Kallinger et al., 2017, A&A 603, A13)

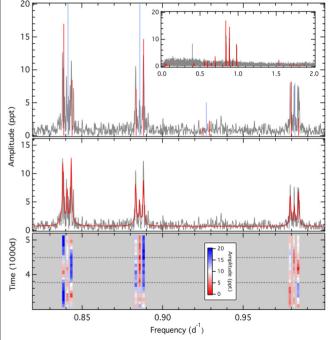

- BRITE photometry (6 seasons in 2013-2019; 156 days; BTr, Blb; cadence 0.338 min)
 - SMEI photometry (8 years; 101.6 min)

Radial velocites (96 years)

- Single-lined spectroscopic triple system:

 - B9V star (suspected SPB star; close to the cool border of instability strip) with two low mass companions
 - ✓ 3.3 days
 - ✓ 154 days
 - Frequency analysis BTr data
 - **У** 9 statistically significant closely separated doublets (ℓ =1 modes with m=±1) (red squares)
 - 4 additional independent frequencies
 - 7 combination frequencies

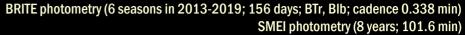


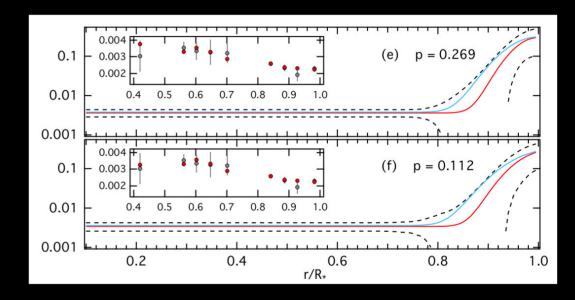

Interior rotation profile

→ HD201433 (Kallinger et al., 2017, A&A 603, A13)

- BRITE photometry (6 seasons in 2013-2019; 156 days; BTr, Blb; cadence 0.338 min)
 - SMEI photometry (8 years; 101.6 min)
 - Radial velocites (96 years)

- Single-lined spectroscopic triple system:
 - ✓ B9V star (suspected SPB star; close to the cool border of instability strip) with two low mass companions
 - ✓ 3.3 days
 - ✓ 154 days
- Frequency analysis BTr data
- Frequency analysis SMEI data
 - ✓ Confirmation 3 closely separated triplets of ℓ =1 modes
 - ✓ Evidence for amplitude changes (mode lifetime of 680(110) days)

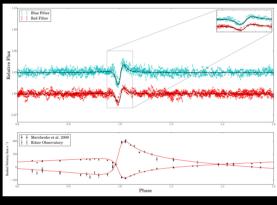




Interior rotation profile

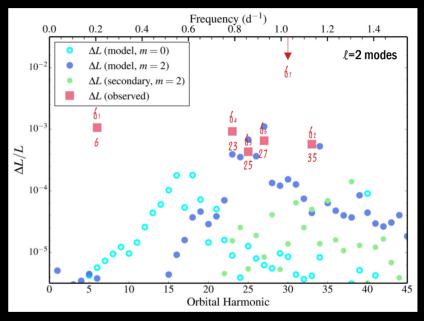
- → **HD201433** (Kallinger et al., 2017, A&A 603, A13)
 - Single-lined spectroscopic triple system:
 - ✓ B9V star (suspected SPB star; close to the cool border of instability strip) with two low mass companions
 - ✓ 3.3 days
 - ✓ 154 days
 - Frequency analysis BTr data
 - Frequency analysis SMEI data
 - Interior rotation profile radiative envelope
 - ✓ Slowly and ridigly rotating envelope
 - ✓ Thin and significantly more rapidly rotating surface layer
 - → Compatible with orbital period of innermost companion

Radial velocites (96 years)


- → Pedersen, 2022, ApJ 940, 49
 - Core rotation decreases with age
 - Evidence for angular momentum transport on main-sequence

Tidal forces

- → 1 **Orionis** (Pablo et al., 2017, MNRAS 467, 2494)
 - Massive binary
 - 09 III + B1 III/IV
 - $P_{orb} = 29.13376 \text{ days}$
 - e = 0.764
 - Frequency analysis
 - 7 frequencies

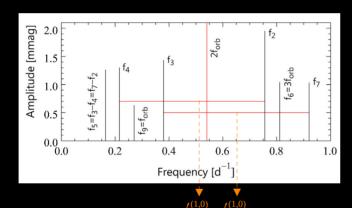

(cf. Talk Kolaczek-Szymańsky)

Tidally excited oscillations discovered in 0 stars

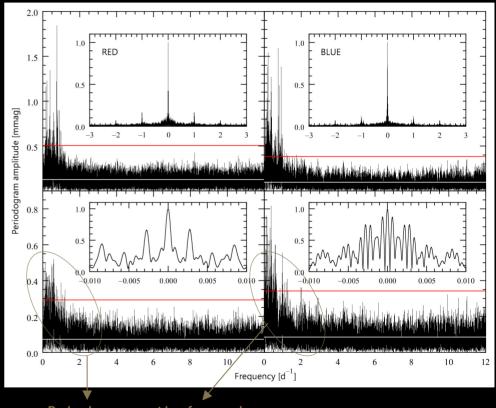
(heartbeat signal at periastron)

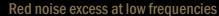
- η Carina (Richardson et al., 2018, MNRAS 475, 5417)
- \rightarrow ε Lupi (Pablo et al., 2019, MNRAS 488, 64)

BRITE photometry (2013 & 2015; 9 months; UBr, BTr, BHr, BAb, Blb) High-resolution spectra (2025-2016; #11; 1.06-m Ritter Observatory) Archival radial velocities (Marchenko et al., 2000, MNRAS 317, 333)



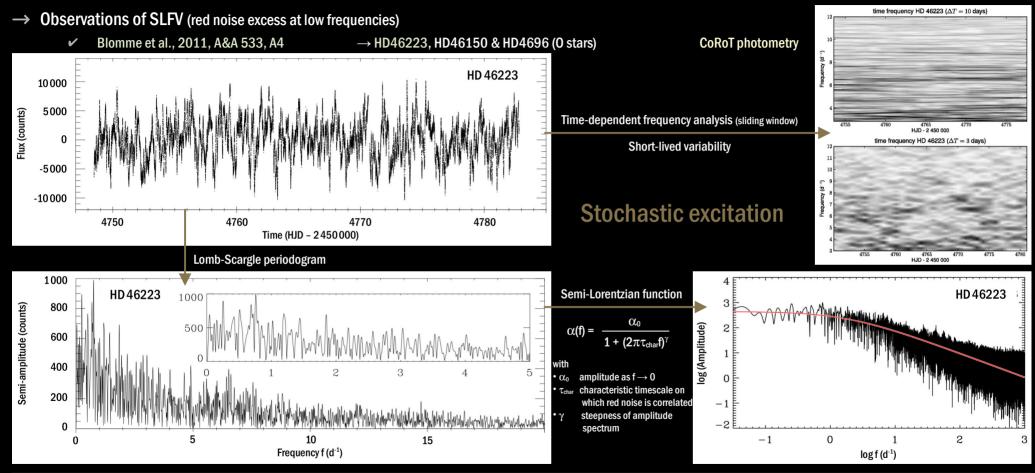
Tidal forces


- $\rightarrow \pi^5$ Orionis (Jerzykiewicz et al., 2020, MNRAS 496, 2391)
 - SB1 system and ellipsoidal variable
 - ✓ Two early B-type stars
 - $Arr P_{orb} = 3.70 \text{ days}$
 - Circularized orbit
 - Synchronized rotation
 - Frequency analysis
 - 9 frequencies



Self excited $(\ell,m)=(1,0)$ g-modes in primary that are distored by equilibrium tide

(if axis of pulsating component is tilted)


BRITE photometry (6 seasons in 2013-2019; UBr, BTr, BHr, BAb, BLb)

- → Observations of SLFV (red noise excess at low frequencies)
 - ✔ Blomme et al., 2011, A&A 533, A4
 - Tkachenko et al., 2014, MNRAS 438, 3093
 - Aerts et al., 2017, A&A 602, A32
 - ✓ Simón-Díaz et al., 2018, A&A 612, A40
 - Ramiaramanantsoa et al., 2018, MNRAS 480, 972
 - Bowman et al., 2019, A&A 621, A135
 - ✓ Bowman et al., 2019, NatAs 3, 760
 - ✓ Dorn-Wallenstein et al., 2019, AJ 878, 155
 - Bowman et al., 2020, A&A 640, A36
 - Dorn-Wallenstein et al., 2020, AJ 902, 24
 - Rauw et al., 2019, A&A 621, A15
 - Nazé et al., 2021, MNRAS 502, 5038
 - ✓ Lenoir-Craig et al., 2022, AJ 925, 79
 - Elliot et al., 2022, MNRAS 509, 4246
 - Bowman et al., 2022, A&A 668, A134
 - Kołaczek-Szymański et al., 2022, A&A 659, A47
 - Dorn-Wallenstein et al., 2022, AJ 940, 27

- → HD46223, HD46150 & HD4696 (0 stars)
- → primary of massive binary V380 Cyg (B star)
- \rightarrow HD188209 (09.5 lab blue supergiant)
- → HD2905 (early-B supergiant)
- → V973 Scorpii (0-type supergiant)
- \rightarrow 35 OBAF stars
- → 114 ecliptic OB stars & 53 LMC OB stars
- \rightarrow 6 LMC yellow supergiants & 2 LMC luminous blue variables
- \rightarrow 70 OB stars
- \rightarrow 28 LMC vellow supergiants & 48 Galactic red supergiants
- → HD149404 (massive post-Roche Lobe overflow system)
- → 26 Wolf-Rayet stars & 8 luninous blue variables
- → 50 Galactic Wolf-Rayet stars
- → P Cygni (luminous blue variable)
- \rightarrow 30 OB stars
- → MACHO 80.7443.1718 (blue supergiant + late 0-type dwarf)
- \rightarrow 101 LMC and 25 SMC cool supergiants

CoRoT

Kepler + spectra

Kepler + spectra

spectra

BRITE

CoRoT

K2 + TESS

TESS

TESS + spectra

TESS

BRITE

TESS

BRITE, TESS, MOST

BRITE

CoRoT

TESS

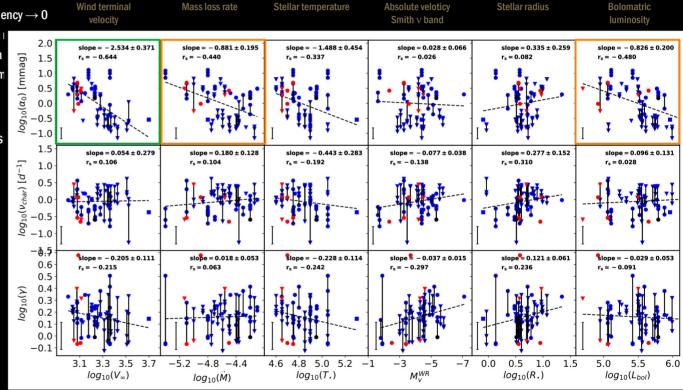
TESS

Feature observed for many different types of massive stars!

- → Characterisation of SLFV (red noise excess at low frequencies)
 - Amplitude spectrum fitting (frequency domain)
 - Semi-Lorentzian function
 - \rightarrow α_0 characteristic amplitude as frequency \rightarrow 0
 - \rightarrow $\tau_{char} = 1/v_{char}$ characteristic timescale on which red noise is correlated
 - γ steepness of amplitude spectrum

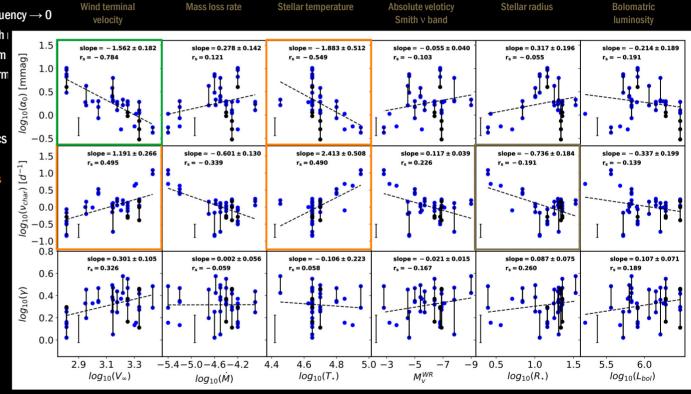
Correlations with stellar and wind characteristics

- \rightarrow $\alpha_{\rm w}$ frequency independent noise term (white noise)
- Lenoir-Craig et al., 2022, AJ 925, 79


→ 50 Galactic Wolf-Rayet stars

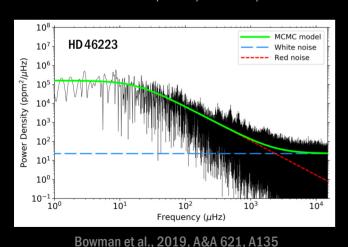
BRITE (#4), TESS (#49), MOST (#6)

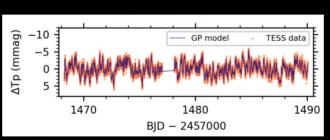
- → Characterisation of SLFV (red noise excess at low frequencies)
 - Amplitude spectrum fitting (frequency domain)
 - Semi-Lorentzian function
 - $\begin{array}{ccc} \rightarrow & \alpha_0 & \text{characteristic amplitude as frequency} \rightarrow 0 \\ \rightarrow & \tau_{\text{char}} = 1/\nu_{\text{char}} & \text{characteristic timescale on which} \\ \end{array}$
 - $ightarrow \gamma$ steepness of amplitude spectrum
 - $ightarrow lpha_{
 m w}$ frequency independent noise term
 - Lenoir-Craig et al., 2022, AJ 925, 79
 - Correlations with stellar and wind characteristics
 - WR stars without signs of H in spectrum hotter, more luminous cWRs with denser winds have higher levels of stochastic variability



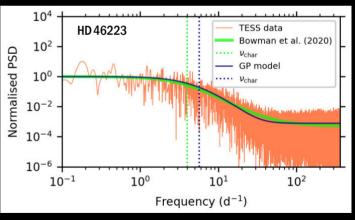
- → Characterisation of SLFV (red noise excess at low frequencies)
 - Amplitude spectrum fitting (frequency domain)
 - Semi-Lorentzian function

 - \rightarrow $\tau_{char} = 1/\nu_{char}$ characteristic timescale on which
 - $\rightarrow \hspace{0.5cm} \gamma \hspace{1.5cm} \text{steepness of amplitude spectrum} \\$
 - ightarrow $\alpha_{\rm w}$ frequency independent noise term
 - Lenoir-Craig et al., 2022, AJ 925, 79
 - Correlations with stellar and wind characteristics
 - WR stars without signs of H in spectrum hotter, more luminous cWRs with denser winds have higher levels of stochastic variability
 - → WR stars with signs of H in spectrum


Stars observed at different epochs can have significantly different fitted parameters



- → Characterisation of SLFV (red noise excess at low frequencies)
 - Amplitude spectrum fitting (frequency domain)
 - Semi-Lorentzian function
 - \rightarrow α_0 characteristic amplitude as frequency \rightarrow 0
 - \rightarrow $\tau_{char} = 1/v_{char}$ characteristic timescale on which red noise is correlated
 - → γ steepness of amplitude spectrum
 - \rightarrow $\alpha_{\rm w}$ frequency independent noise term (white noise)
 - Lenoir-Craig et al., 2022, AJ 925, 79
 - Bowman et al., 2022, A&A 668, A134



- Gaussian process regression (time domain)
 - Damped simple harmonic oscillator
 - \rightarrow σ_A characteristic amplitude
 - \rightarrow $\rho_{char} = 2\pi/\omega_0$ characteristic variability timescale
 - τ_{damp} characteristic damping timescale
 - → C_{iitter} jitter term to emulate uncorrelated noise in the observations
 - Q quality factor (more damping if low value)
- → 50 Galactic Wolf-Rayet stars
- → 30 OB stars

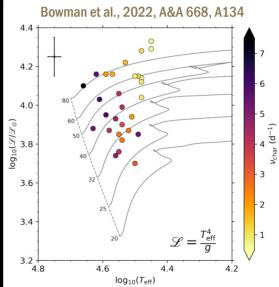
BRITE (#4), TESS (#49), MOST (#6)

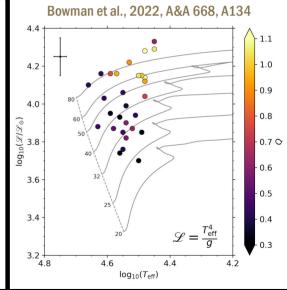
TESS (#30)

Bowman et al., 2022, A&A 668, A134

- → Characterisation of SLFV (red noise excess at low frequencies)
 - Amplitude spectrum fitting (frequency domain)
 - Semi-Lorentzian function
 - \rightarrow α_0 characteristic amplitude as frequency \rightarrow 0
 - \rightarrow $\tau_{char} = 1/v_{char}$ characteristic timescale on which red noise is correlated
 - \rightarrow γ steepness of amplitude spectrum
 - \rightarrow $\alpha_{\rm w}$ frequency independent noise term (white noise)
 - Lenoir-Craig et al., 2022, AJ 925, 79
 - Bowman et al., 2022, A&A 668, A134

"yellow subgroup":


- Low v_{char} + high α_0/σ_A + low v_{damp}
- Higher mass
- More evolved (closer to TAMS)
- Less stochastic (high Q value)


V_{char} probes "blue subgroup":

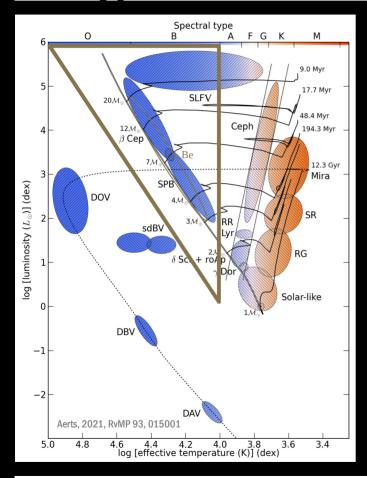
- High v_{char} + low α_0/σ_A + high v_{damp}
- Less evolved (closer to ZAMS)
- More stochastic (low Q values)

Gaussian process regression (time domain)

- Damped simple harmonic oscillator
 - \rightarrow σ_A characteristic amplitude
 - \rightarrow $\rho_{char} = 2\pi/\omega_0$ characteristic variability timescale
 - \rightarrow τ_{damp} characteristic damping timescale
 - → C_{jitter} jitter term to emulate uncorrelated noise in the observations
 - Q quality factor (more damping if low value)

Mass Age

Degree of coherency


- → Interpretation of SLFV
 - Surface granulations (cf. red giant stars) but v_{char} order of magnitude smaller than predicted v_{gran} for majority of stars (Bowman et al., 2019, A&A 621, A135)
 - Internal Gravity Waves (IGWs)
 - Travelling waves that are stochastically excited at the interface of a convective region and a stably stratified zone
 - → turbulent core convection
 - turbulent pressure fluctuations in subsurface convective zones in outer envelope (Fe-opacity peak converction zone)
 - Propagate and dissipate within radiative regions
 - Wind-driven processes
 - Clumpy, aspherical, and inhomogeous stellar wind (line deshadowing instability)

No consensus yet...

OB-type stars

- $\rightarrow \beta$ Cephei stars (β Cep)
 - Low order p and g modes with periods of few hours
- → Slowly Pulsating B stars (SPB)
 - High order g modes with periods of several hours to few days
- → Stochastic low-frequency variability (SLFV)
 - \triangleright α Cygny stars
 - Fast Yellow Pulsating Supergiants (?)
- → Be stars (Be)
 - Pulsations (cf. Talk Saio)
- → Maia variables (?)

Excitation mechanisms at play

- Opacity mechanism operating in Z bump
- Stochastic excitation
- Non-linear mode excitation
- Rotation
- Tidal excitation

Hybrids!

Influencing factors

- Opacities
- Interior mixing profile
- Interior rotation profile
- Interior temperature profile
- Tidal forces
- Magnetic fields
- Mass loss
- Stellar wind

