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ABSTRACT

Multiple systems for which the astrometric and spectroscopic orbit are known offer the unique possibility of determining the distance
to these systems directly without any assumptions. They are therefore ideal objects for a comparison of Gaia data release 3 (GDR3)
parallax data, especially since GDR3 presents the results of the non-single star (NSS) analysis that potentially results in improved
parallaxes. This analysis is relevant in studying the parallax zero-point offset (PZPO) that is crucial in improving upon the distance
scale. An sample of 192 orbital parallax determinations for 186 systems is compiled from the literature. The stars are also potentially in
wide binary systems (WBS). A search was performed and 37 WBS (candidates) were found. Only for 21 objects does the NSS analysis
provide information, including 8 from the astrometric binary pipeline, for which the parallaxes do improve significantly compared to
those in the main catalogue with significant lower goodness-of-fit (GOF) parameters. It appears that most of the objects in the sample
are eliminated in the pre-filtering stage of the NSS analysis. The difference between the orbital parallax and the (best) Gaia parallax
was finally obtained for 170 objects. A raw comparison is meaningless, however, due to limitations in accuracy both in the orbital
and in Gaia data. As many systems have been eliminated in the pre-filtering stage of the astrometric NSS pipeline, they remain in
GDR3 with values for the GOF parameter in the range from several tens to several hundreds. When objects with large parallax errors
or unrealistically large differences between the orbital and Gaia parallaxes are eliminated, and objects with a GOF <100 or < 8 are
selected (the latter also with G < 10.5 mag selected), samples of 68 and 20 stars remain. Parallax differences in magnitude bins and for
the sample are presented. Three recipes from the literature that calculate the PZPO are tested. After these corrections are applied the
remaining parallax differences are formally consistent with zero within the error bar for all three recipes. In all cases, an uncertainty in
these averages of about 10-15 pas remains for these samples due to the small number statistics. The proof of concept of using orbital
parallaxes is shown to work, but the full potential is not reached as an improved parallax from the NSS analysis is available for only for
eight systems. In the final selection, the orbital parallax of 18 of 20 stars is known to better than 5%, and the parallax determination for
6 stars is better than from Gaia. In the full sample, 148 objects reach this precision in orbital parallax and therefore the full potential

of using orbital parallaxes may hopefully be reached with GDR4.
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1. Introduction

With the second data release (DR; Gaia Collaboration 2018)
of the Gaia mission (Gaia Collaboration 2016), it was demon-
strated that the mean parallax of quasi-stellar objects (QSOs)
was not zero, but is slightly negative, —0.029 mas (Lindegren
et al. 2018). This was confirmed in the third early DR (GEDR3;
Gaia Collaboration 2021), where the average and median
parallax zero-point offset (PZPO) of QSOs are —-21 and
—17 pas, respectively (Lindegren et al. 2021; hereafter L21).
L21 presented a Python script to the community that returned
the PZPO (without an error bar) as a function of input param-
eters, namely ecliptic latitude (8), G-band magnitude, the
astrometric_params_solved parameter, and either the
effective wavenumber of the source used in the astrometric
solution (veg, nu_eff used_in_astrometry for the five-
parameter  solution astrometric_params_solved=31)
or the astrometrically estimated pseudo-colour of the
source (pseudocolour) for the six-parameter solution
(astrometric_params_solved=95). The module is defined

*Full Tables 1 and 2 are available at the CDS via anonymous
ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/669/A4

in the range 6 < G < 21 mag, 1.72 > v > 1.24 um‘l, corre-
sponding to about 0.15 < (Ggp — Grp) < 3.0 mag where G, Ggp,
and Grp are the magnitudes in the Gaia G, Bp, and Rp band,
respectively. The script is based on the parallax values of QSOs
and wide-binary systems (WBS; see L21 for all details).

In parallel, after the publication of GDR2 numerous stud-
ies appeared that studied the PZPO offset using other classes
of stars, typically at brighter magnitudes than the QSOs. Exam-
ples using GDR2 data are studies of classical cepheids (CCs;
Riess et al. 2018; Groenewegen 2018) that found a more negative
value (—0.046+0.013 and —0.049 +0.018 mas, respectively), RR
Lyrae (~—0.056 mas, Muraveva et al. 2018, —0.042 + 0.013 mas,
Layden et al. 2019), red clump stars (Chan & Bovy 2020),
(detached) eclipsing binaries (Stassun & Torres 2018; Graczyk
et al. 2019), red giant asteroseismic parallaxes (Zinn et al. 2019;
Khan et al. 2019), and stars with parallaxes from very long base-
line interferometry (Xu et al. 2019), amongst others. With the
advent of GEDR3 this line of research has continued (Huang
et al. 2021; Stassun & Torres 2021; Ren et al. 2021; Zinn 2021;
Riess et al. 2021; Maiz Apellaniz 2022, hereafter MA22), includ-
ing claims that the L.21 procedure overcorrects the PZPO (Riess
et al. 2021; Zinn 2021), at least for brighter objects. Alterna-
tive procedures for the L21 correction have been proposed by
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Groenewegen (2021, hereafter G21) and MA22. Clearly, the spa-
tial, magnitude, and colour dependence of the PZPO remains of
great interest.

One disadvantage of using alternative classes of objects is
the intrinsic assumption is that the distances to those objects are
known exactly, and with an accuracy comparable to that of Gaia.
However, with the exception of the QSOs that truly have a par-
allax of zero for all practical purposes, this is based on direct or
indirect assumptions or model dependences, such as reddening,
a (linear) period-luminosity relation, an absolute magnitude, or
a surface-brightness colour relation.

Binaries for which the astrometric and spectroscopic orbits
are known offer the possibility of deriving the orbital parallax
free from any assumption, based on Kepler laws. The only limita-
tion in the accuracy of the distance is ultimately the quality of the
data. GDR3 (Gaia Collaboration 2023b) offers the possibility of
comparing Gaia trigonometric parallaxes to orbital parallaxes. In
previous releases, the Gaia astrometric solution assumed single
stars. Therefore, the quality parameters of the astrometric solu-
tion, such as the goodness of fit (GOF, astrometric_gof_al)
or the renormalised unit weight error (RUWE), were (very) poor
for (close) binary systems. In GDR3, non-single star (NSS) solu-
tions are considered (Halbwachs et al. 2023; Gaia Collaboration
2023a), which means that for a subset of stars, (improved) paral-
laxes are determined that binary motion into account. Individual
studies of astrometric and spectroscopic binary orbits also often
derived the orbital parallax and compared it to HIPPARCOS or
Gaia data, but no real systematic differences can be identified
as the PZPO is a small quantity using mostly single objects
(Gallenne et al. 2019 used four objects in the comparison of the
orbital parallax and GDR2 data).

The paper is structured as follows. In Sect. 2, the sample of
binaries is introduced and confronted with G(E)DR3 data. The
impact and limitations of the DR3 NSS analysis are discussed
in Sects. 3.1 and 3.2, and the PZPO is discussed in Sect. 3.3. A
brief discussion and summary conclude the paper.

2. Sample

Recently, Piccotti et al. (2020) compiled a list of 69 SB2s with
both visual and spectroscopic orbits, but the emphasis of that
paper was on the masses and ages of the systems. The sample
selection followed that of Piccotti et al. (2020) and was based
on an extensive literature search using the Sixth Catalogue of
Orbits of Visual Binary Stars (ORB6; Hartkopf et al. 2001, start-
ing from orbits with grades 1, 2, and 3)! and the Ninth Catalogue
of Spectroscopic Binary orbits (SB9; Pourbaix et al. 2004)>.
This initial correlation pointed to other literature that was then
searched. Articles by specific authors were searched through the
ADS, and the arXiv was monitored for relevant papers. The lit-
erature search ended May 10, 2022. Table 1 lists the adopted
orbital elements and velocity amplitudes with references for a
total of 186 systems. For six binaries, several components have
been resolved (WDS 0327240944, 06024+0939, 0629042013,
17247+3802, 20396+0458, and 22388+4419), and therefore the
table has 192 entries. This almost triples the number of systems
compared to Piccotti et al. (2020). Although it was attempted
to make this list complete, this cannot be guaranteed. Obvi-
ously, GDR3 provides orbital elements and velocity amplitudes
for selected systems, and the impact of this is discussed
in Sect. 3.2.

I http://www.astro.gsu.edu/wds/orb6/orb6frames.html
2 https://sb9.astro.ulb.ac.be
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The orbital parallax follows from the orbital elements as
7o = af ((Ky + Ky) - P/29.7847 - N1 = ¢?/ sin ) (1)

where a is the semi-major axis in mas, K; and K are the veloc-
ity semi-amplitudes of the two components (in kms™'), P is the
orbital period in years, e is the eccentricity of the orbit, i is
the inclination in degrees, and n, is the orbital parallax in mas.
The error in 7, is calculated through standard error propagation
assuming all errors are independent. The orbital parallaxes and
errors are listed in Table 2.

No selection on the accuracy of period, major axis, inclina-
tion, or velocity amplitude is made to be included in the sample,
even if a large error implies a large error on the orbital parallax
and likely a value that is not competitive in accuracy with the
Gaia value. For objects for which no error bars on the orbital
elements was published, an error of 1.3, 6, and 40% on period,
2.5, 15, and 40% on a, 5, 12, and 27° on i, and 0.01, 0.02, and
0.10 on e was adopted for orbits of grade 1, 2, and 3 in ORB6,
respectively. If no error on the velocity amplitude was reported,
an error of 5% was adopted. These cases are marked in Table 1
and are good targets for further observations to improve on the
orbital parameters.

As a first step and as preparation for the DR3 release, the
objects were identified in GEDR3 and also in the HIPPARCOS
catalogue (the new reduction version by van Leeuwen 2008).
The later proved essential in many cases as the epoch 1991.25
HIPPARCOS coordinates could be transformed to the epoch
2016.0 of GEDR3/GDR3 to properly identify the correct object
that was achieved by comparing coordinates, parallax, and mag-
nitude. It was then trivial to identify the correct object with the
release of DR3, and Table 2 gives the orbital parallax (based
on the data in Table 1 and Eq. (1)), and some information
from HIPPARCOS and DR3 for the 192 objects. DR3 includes
some parameters that were used in the pre-filtering stage of the
astrometric binary pipeline (Halbwachs et al. 2023); they are
discussed in detail below.

Inspection of Table 1 reveals that quite a number of objects
(59, or about 30%) are not listed in GDR3, or are listed with-
out parallax. The former are six of the very brightest objects (all
have V < 2.7 mag). The others only have two-parameter solutions
(astrometric_params_solved = 3). However, these objects
may potentially be in WBS. To investigate this further, the
objects were correlated with the catalogue of El-Badry et al.
(2021, based on GEDR3 data). Fourteen matches were found
at distances up to 57”. However, objects without a parallax or
proper motion in GEDR3 are obviously missing from El-Badry
et al. (2021). In a second step, all sources within 1’ were retrieved
from GDR3 and a potential list of WBS was compiled based on
the orbital parallax and criteria on the parallax difference so that
the search would retrieve all 14 matches in El-Badry et al. (2021).
In a final step, the GDR3 and HIPPARCOS parallaxes and proper
motions were inspected to make a final list of likely WBS, keep-
ing only stars with Bp and Rp photometry. The information of
these 37 sources is listed in Table A.1.

3. Results
3.1. Effects of pre-filtering in the NSS processing

Table A.2 shows that only 21 of the 180 (186 unique objects
minus 6 stars not in DR3) known binaries have a non-zero NSS
flag. In other words, 90% of the known binaries have not been


http://www.astro.gsu.edu/wds/orb6/orb6frames.html
https://sb9.astro.ulb.ac.be
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flagged as such by the NSS pipeline(s). Although this is the real-
ity of the current release, it might be instructive to investigate
how these binaries were overlooked. Halbwachs et al. (2023)
described the processing of astrometric binary stars. Stars were
selected to be brighter than G = 19 mag and have 12 or more
visibility periods. The first criteria has no impact, and the second
removes 23 objects. There is a selection on keeping sources with
RUWE < 1.4, removing 93 objects (of the 130 that have a RUWE
listed), on ipd_frac_multi_peak < 2, removing 64 objects,
on ipd_gof_harmonic_amplitude <0.1, removing 57 objects,
and on the significance of the modified Bp-Rp excess, |C*|/o ¢+
< 1.645, removing 113 objects.

Only 30 objects meet all pre-selection criteria. Additional
objects are likely to have been removed in the processing and
the post-processing steps (see details in Halbwachs et al. 2023).
Similar criteria must have been adopted in the processing of
spectroscopic binaries, but the paper describing this has not been
published at the time of submission. As the aim of the paper is
to use improved parallaxes from the astrometric binary pipeline,
the details of the processing in the spectroscopic binary pipeline
are less relevant here.

3.2. Comparing the orbital elements of the NSS processing
with the literature

Comparison of the orbital elements in Table A.2 with those in
the literature reveals that a number of them (03396+1823,
04179-3348,  12313+5507, 17038-3809,  17422+3804,
18339+5144, 23456+1309, 23485+2539, and 18339+5144)
refer to a different component than listed in Table 1, because
period, eccentricity or velocity amplitude do not match. In all
cases except one, the period in Table A.2 is the shorter one,
suggesting that the elements refer to some inner orbit of the
multiple system. Consultation of the ORB6 suggests that none
of these orbits was known.

In the other cases, the elements found by the NSS analysis
are not more precise than known in the literature, which were
therefore kept. The median and 1.4826x median absolute devi-
ation (MAD; equivalent to 1o in a Gaussian distribution) were

calculated of (x; — x3)/ 4 /0§1 +02,

where x represents period,
eccentricity, or the velocity amplitudes, from the literature and
the NSS analysis, and which are expected to be zero and unity,
respectively.

Although the sample is small the errors on the parameters
in the SB2 solution appear to be underestimated, as is indeed
suggested at the end of Sect. 6 in Babusiaux et al. (2023). When
we take the formal errors, the width of the distribution is about
4-90-. When the errors are Scaled with VGOF, this is reduced
to 0.8—1.50. For the non-SB2 solutions, the width is 0.6-1.60,
suggesting that the error estimates are realistic.

3.3. PZPO

The main aim of the paper is to the investigate the PZPO.
Figure 1 shows the difference of DR3 parallax minus orbital par-
allax for the objects plotted against G magnitude. The range in
ordinate is +12 mas to display all points. The Gaia parallax is
the improved parallax from the NSS analysis (with its associated
GOF parameter) for the eight stars in Table A.2 and from Table 1
otherwise. Added are the 37 WBS from Table A.1 for a total
of 170 determinations plotted. When two Gaia parallaxes were
available (from the counterpart of the orbital parallax source and
from a WBS), they were not averaged as the PZPO depends on

T —
e
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o
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Am (mas)

10 15

G magnitude

Fig. 1. Parallax difference in the sense DR3 minus orbital parallax for
the entire sample. The range in ordinate is +£12 mas. The stars from the
SS are plotted in blue (see text).

magnitude and possibly on colour. The figure shows that some
of the parallax errors (dominated by the error in orbital paral-
lax) are large and do not constrain any difference with the DR3
parallaxes. Unless specified otherwise, a standard selection (SS)
is applied from now on choosing objects where the error in the
orbital parallax should be smaller than five times the error in
the DR3 parallax, the error in the orbital and DR3 parallaxes
should be smaller than 2 mas, the ratio of the absolute differ-
ence between orbital and DR3 parallax to the combined error
bar should be lower than five, and the GOF (either from the
astrometric solution or the NSS solution) should be lower than
100, reducing the number of points to 68. In Fig. 1, these points
are plotted in blue, and Fig. 2 shows a zoom with ordinates
of +0.15mas using this selection. The data were also binned
in G mag, using five bins that started at G = 0, 5.0, 6.0, 7.4,
and 9.2 mag (this last bin includes all fainter objects), where
the weighted mean (and error on the mean) was calculated, and
plotted at the mean G magnitude of the objects in that bin.
The first bin collects all of the brightest objects. Bright limits
of 5.0 and 6.0 mag were used in G21 and L21/MA22, respec-
tively, while 7.4 and 9.2 mag are cardinal magnitudes used in
MAZ22. The weighted average over all objects results in an offset
of —41.7 + 10.7 pas (model 1 in Table 3, which also includes the
values per magnitude bin).

Several corrections to the G(E)DR3 parallaxes have been
proposed, and it is interesting to compare the corrected paral-
laxes to the orbital ones. To guide the eye, the solid line in Fig. 2
shows the magnitude correction from G21 with a constant spatial
offset of —0.013 mas added (the average spatial correction of the
sample following G21 at HEALPix level 0). We recall that the
HEALPix formalism (Gorski et al. 2005) is a convenient way to
divide the sky into equal-area pixels. At HEALPix level O, there
are 12 pixels, and this increases by a factor of four for every next
higher level. The HEALPix formalism is used by the Gaia team
and is encoded in the source_id>.

Below, we apply different corrections on a star-by-star basis
to the GDR3 parallaxes. If the corrections work the weighted
mean difference should be consistent with zero. The first cor-
rection is the one by L21 (model 2). The number of sources
is reduced to 30 as the correction is only defined for stars
fainter than magnitude 6. After correction, the difference with
the orbital parallax is —8.7 + 11.5 pas. Model 3 shows the results

3 Pixel number = source_id/(2% - 41271y for a given HEALPix
level.
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Fig. 2. Zoom of Fig. 1, with the SS applied as described in the text.
There are points outside the plot range. The blue points are the weighted
averages plotted at the mean magnitude of the objects in the magnitude
bins. The solid lines represent the magnitude dependence of the PZPO
from G21 with an average spatial correction of —0.013 mas added.

for the MA22 correction, which is an extension of L21. The
resulting difference is marginally closer to zero. We note that
the errors on the correction are identical to applying no correc-
tion. This is related to the fact that the L21 and MA?22 provided
the offset without error bars. Finally, the G21 formalism was
tested. The correction depends on the chosen HEALPix level
and consists of a spatial correction defined at G = 20 mag
(depending on the source coordinates (i.e. a certain pixel) at a
chosen HEALPix level) and an additive magnitude correction.
Following G21, only pixels with more than 40 QSOs have been
considered. Models 4-8 show the results for HEALPix levels
04, respectively. As the G21 correction is defined for G > 5,
there are more objects at the lower HEALPix levels, but then
the number decreases with increasing HEALPix level as the
number of objects in pixels with insufficient QSOs increases.
HEALPix level 2 seems a good compromise between the sam-
pling of the spatial correction and the loss of objects, and the
result is comparable to the results for the other correction meth-
ods. If the G21 correction is limited to G > 6 mag, as it is for the
other two methods, the resulting difference is very close to zero
(model 6a).

The SS is useful to obtain insight into the overall behaviour
of the PZPO but now a stricter final selection (FS) is introduced.
As there are few objects fainter than tenth magnitude that nev-
ertheless cover a wide range, and because there are very few
extremely bright objects, the sample was restricted in magnitude
and two bins from 4-6.162 and 6.162-10.591 mag (two break-
points in Eq. (7) in G21) were considered. As there is a general
offset between orbital and Gaia parallaxes, the condition on the
difference of the two was modified to |(mgu. — (—0.04 mas)) —
Towl/oe < 5.0, where o is the combined error of the Gaia and

the orbital parallax \/ (k- Ongy)? + 02 . The factor k is the error

inflation factor, which was set to unity in the SS. Several papers
have found that the error bars in the astrometric solution are
underestimated (Fabricius et al. 2021; Maiz Apellaniz et al. 2021;
MAZ22). Here the formalism by El-Badry et al. (2021) was used.
There correction was derived for G < 7 mag, but it will be used
for brighter magnitudes as well. The effect is small in any case,
k = 1.10-1.15 for G < 10 mag. Finally, a more stringent cut on
the GOF was imposed. The distribution of the GOF of QSOs
was discussed in G21, and in that paper an interval from —4 to
+5 was chosen for acceptable solutions. Here the upper limit is
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Fig. 3. Parallax difference. Top panel: as Fig. 2 for the final selection
as described in the text. There are points outside the plot range. Middle
panel: offset plotted against Bp-Rp colour. The ordinate is chosen to be
+1 mas to show all data points in the sample, and the bottom panel has
the same range in ordinate as in the top panel.

slightly relaxed to +8, resulting in a sample of 20 objects. This is
consistent with the other often-used selection criterion of RUWE
<1.4, which would result in 23 objects.

Model 9 in Table 3 gives the results, and they are displayed
in Fig. 3. This figure also shows the offset as a function of Bp-Rp
colour with the range in ordinate chosen to show all objects,
indicating that there is no evident dependence on colour. Mod-
els 10-16 show the results after applying the various correction
methods. The results are very similar as before. All three pro-
posed models bring the differences closer to zero, and consistent
with zero within the error bars. When restricted to G magnitudes
fainter than 6, G21 again provides the correction closest to zero
for HEALPix level 2. Nevertheless, most of the results suggest
that the corrections may be slightly underestimated (i.e. should
be more negative), at least on average over the 6-10 magnitude
range.
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Table 3. Parallax differences for different assumptions.

Model Ar G N | Model Am G N | Remarks
(pas)  (mag) (nas) (mag)
Standard selection (SS) Final selection (FS)
1 -41.7 +10.7 6.5 68 |9 -26.7+14.3 6.2 20| All
—-119+554 41 27 +78.9+41.1 53 12 | G<5(SS),4-6.2 (FS)
-93.4 +£33.7 56 11 —-41.1 £15.3 75 8 | G =5-6(SS), 6.2-10.6 (FS)
-16.2 £ 16.0 6.6 14 G=6-74
-71.4+18.3 8.4 8 G=74-92
+52.2+394 13.9 8 G>92
2 -8.7+11.5 9.0 30| 10 -7.7+15.1 73 9 | All, L21 correction
+7.8 +16.0 6.6 14 G=6-74
—48.3+18.3 8.4 8 G=7492
+75.6 +394 13.9 8 G>92
3 -7.6+11.5 90 30| 11 -8.8+15.1 7.3 9 | All, MA22 correction
+15.5+16.0 66 14 G=6-74
-57.0+18.3 8.4 8 G=74-92
+82.6 394 13.9 8 G>92
4 -5.6+10.9 81 41| 12 +10.0 £ 14.5 6.6 15 | All, G21, HEALPIX level O correction
—-37.5+34.2 56 11 G =5-6(SS)
+14.1 £ 16.1 6.6 14 G=6-74
—-40.4 +18.3 8.4 8 G=749.2
+79.1+394 13.9 8 G>92
5 -7.1+10.9 81 41 | 13 +9.5+14.5 6.6 15 | All, G21 level 1 correction
—-41.0+34.2 56 11 G =5-6(SS)
+134 +16.1 6.6 14 G=6-74
422+ 18.4 8.4 8 G=749.2
+76.5+394 13.9 8 G>92
6 -83+11.2 82 39| 14 +10.8 £ 15.0 6.7 14 | All, G21 level 2 correction
—-58.3+37.8 56 10 G =5-6(SS)
+11.7 = 16.5 6.7 13 G=6-74
—-404 + 18.5 8.4 8 G=74-92
+78.6 £39.6 13.9 8 G>92
6a -35+11.7 91 29 | 14a +0.5+154 7.3 9 | G21, level 2 correction, G > 6 mag
7 +5.6+124 84 35| 15 +114+17.1 6.7 10 | All, G21, level 3 correction
—-45.8 £46.0 5.6 9 G =5-6
+52.3+19.7 6.6 10 G=6-74
—-44.9 + 18.8 8.4 8 G=74-92
+80.2 +£39.8 13.9 8 G>92
8 +18.2+13.6 8.6 33116 +24.9 +19.8 6.9 8 | All, G21, level 4 correction
—65.2+47.3 5.6 8 G =5-6
+99.6 £ 24.2 6.6 9 G=6-74
-38.3+19.5 8.4 8 G=74-92
+97.2 +40.8 13.9 8 G>92

Notes. Results are given for the SS (Cols. 1-4) and the FS (Cols. 5-8), and give the model number, the weighted mean parallax difference with
error, the average G-mag of the objects in the bin, and the number of objects considered. Remarks and further details are given in Col. 9.

4. Conclusions

The results from the NSS analysis specific to GDR3 show the
potential but also the limitations of the current release. Of the
sample of 186 known binaries compiled from the literature to
have an orbital parallax, only 8 have an astrometric and 13
have an spectroscopic orbit determined from the NSS analy-
sis. Most objects are eliminated at the pre-filtering stage of the
NSS analysis. The analysis of the parallax difference between
Gaia and orbital parallax is therefore strongly influenced by the
large GOF parameter in the main astrometric catalogue, limiting
the number of useful objects. The PZPO corrections proposed
by L21, G21, and M22 give similar residuals. After these cor-
rections were applied the remaining parallax differences were

formally consistent with zero within the error bar for all three
recipes. The current data and analysis therefore do not prefer a
particular PZPO correction scheme over the other two.

Several improvements may be anticipated in the near future.
The number of systems for which an orbital parallax will become
available will likely grow, or orbital elements of existing systems
will improve. For about one-third of the systems, separate astro-
metric and spectroscopic orbits exist that were used to obtain
the orbital parallax. For consistency, the existing data could be
combined to obtain a single solution.

The situation might improve by DR4. The orbital parallax
for 18 out of 20 stars in the final selection sample is accurate
to better then 5%, and is even better than the Gaia value for
6 stars. In the full sample, 148 stars have an orbital parallax
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determination better than 5%. Having NSS solutions available
for a eight times larger sample would lead to a significantly
more precise determination of the PZPO at bright magnitudes.
Whether this is realistic would depend on how much the criteria
in the pre-filtering and post-processing stages could be relaxed.
The impact of the former has been discussed, but some of the
stars in the sample may also have been eliminated at the lat-
ter stage. Halbwachs et al. (2023) mentioned three criteria that
have been applied as well. The one on parallax accuracy* would
eliminate about 45% of the sample. The selection on eccentricity
accuracy’ would eliminate 1% of the sample, and the one on the
significance of the photocenter major axis® about 4%. Alterna-
tively, with the planned release of the complete astrometric and
spectroscopic time-series data with DR4, the community could
combine Gaia data with literature data in order to obtain the
best-determined orbit.
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Appendix A: Additional tables
Table A.1. Parameters for the WBS sample

Name Totb  S€p Source ID bg GOF RUWE G NSS Flag
(mas) (") (mas) (mag)
01028+3148 8.859 £ 0.203 564 314142124302719744 8.495 + 0.051 1.876 1.083 16.027 0 y
02057-2423 22.331 £ 1.457 56.6 5121561759597725440 21.028 + 0.019 -2.238 0.910 8.749 0
02124+3018 11.825 + 5.068 4.0 300312157810876160 12.738 £ 0.550  139.299 17.831 6.622 0
02128-0224 24783 £2.616 16.8  2494066897240089984 26.168 + 0.027 -0.162 0.989 7.582 0 y
02442-2530 22253 £0.158 125 5076722404106857472  22.440 = 0.079 65.411 4.285 8.944 0 y
03396+1823 26.378 £2.052 10.1 56861660442751872 27.289 + 0.045 5.265 1.280 15.005 0
03400+6352 23.682 £ 1.927 46.2 488099359330834432 23.359 + 0.018 -1.755 0.951 6.768 0
04179-3348 18.036 + 0.112 5.5 4870527586936020864 19.005 + 0.257 42.199 4799 13.968 0 y
04247+0442 16.700 + 0.033 7.1 3283823383389256064 16.800 = 0.055 30.926 2.686 12953 0
04560+3021 6.906 = 0.353 9.2 156899557664509440 6.718 £ 0.162 0.835 1.026  18.085 0
08317+1924 77.062 + 8.257 9.9 662732115407952768 60.248 + 0.076 27.886 2.051 12.278 0
09194-7739 14.907 + 0.299 9.1 5203285503955597184 14.702 + 0.010 -1.873 0.926 9.277 0 y
09498+2111 3400 +0.879 12.7 640100317815763712 4.729 = 0.023 0.499 1.017  14.306 0
12351+1822 9.043 £ 0.362 20.1 3947649169267207296 8.919 + 0.127 -2.466 0.855 4.690 0
13196+3507 72115 +29.549 17.8 1473166433840437888 73.923 + 0.033 17.809 1.678  11.011 0 y
13239+5456 40.497 £0.143 144  1563590510627624064  40.280 + 0.285 52.627 3.826 3.914 0
14206-3753 13.050 £ 0.063 574  6116979078226372992 13.233 £ 0.018 3.244 1.179 12.453 0
14575-2125 170.963 = 1.697 26.0  6232511606838403968 169.884 + 0.065 4.937 1.298 5.364 0
15006+0836 26.385 +0.107 34.0 1161798072431380096 25.901 + 0.114 2.474 1.129  16.967 0 y
15282-0921 50.720 + 1.212 522 6317854118838346752  48.345 + 0.029 2.005 1.107 7.321 0
16147+3352  43.980 + 0.528 7.3 1328866562170960384 44,134 £ 0.018 2.208 1.078 6.438 0 y
16212-2536 6.239 £ 0.131 20.2  6048602103662751488 7233 +£0.177  114.633 7.170 8.401 0
16311-2405 10.466 + 1.031 13.1  6050627782031927296 7.645 + 0.020 6.648 1.301  13.015 0
17038-3809 15436 £ 0.168 10.6  5976304983594844928 16.084 + 0.021 6.147 1.230 13.432 0 y
17584+0428 21.666 + 1.878 18.2  4472789731012862080 23.647 £ 0.022 4.509 1.235 13.349 0
18002+8000  22.998 +0.463 18.7  2294405721759384064 22.434 + 0.035 3.978 1.230 5.928 0
18055+0230  194.423 + 2.677 6.4  4468557611977674496  195.856 + 0.254 35917 3.706 5.539 0 y
18058+2127 24.576 £ 0.674 28.2  4576326312901650560 24.694 + 0.022 29.445 1.787 9.898 0
18099+0307 20.785 + 0.552 7.2 4469921487444001792 21.637 = 0.030 7.282 1.310  11.690 0 y
18339+5144 60.424 £ 0.150 17.0  2145277550935526784 60.590 + 0.021 5.907 1.238  13.907 0
18413+3018 8.379 + 0.250 14.1  4587744672430944512 8.103 + 0.013 -4.908 0.833 8.699 0
18501+3322 3197 £0931 45.8 2090687726329643392 3.513 £ 0.090 44,763 2.862 7.205 0
19091+3436 28.251 £0.853 16.0  2044341077844180736 24.413 £ 0.015 -3.163 0.891 7.879 0
19196+3720 41.081 £ 0.070 34.6  2051069745406938240 39.318 £ 0.450 337307 26.510 11.480 0 y
19394+3009 14.766 + 0.412 4.8  2032457178231864704 12.511 £ 0.132 5.112 1.340 14.046 0 y
21232-8703 14.556 £4.288 17.8  6342009495947730432 14.010 £ 0.013 -1.170 0.953 8.826 0
22038+6438  38.094 +2.432 8.1 2218144866573662848 32.184 + 0.018 -1.464 0.926 6.330 0 y

Notes. Column 1-2: Name and orbital parallax of the main source. Column 3-4: Source Id of the WBS candidate and the separation between the
two sources. Column 4-9: parallax (with error), GOF, RUWE, G-mag, and NSS-flag. Column 10: Flag indicating if the star is in El-Badry et al.

(2021).
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