

Numerical modelling of stealth solar eruptions; Initiation and Signatures at 1AU

Dana-Camelia Talpeanu^{1,2} Francesco Zuccarello¹ Emmanuel Chané¹ Stefaan Poedts¹ Elke D'Huys²
Marilena Mierla^{2,3}
Skralan Hosteaux¹

¹ KU Leuven/CmPA, Leuven, Belgium

² Royal Observatory of Belgium/SIDC, Brussels, Belgium

³ Institute of Geodynamics of the Romanian Academy, Bucharest, Romania

1. Coronal mass ejections

- huge expulsions of magnetized plasma from the Sun into the interplanetary medium
- associated with solar features (e.g. filament eruption, jet, flare, post-eruptive arcade, coronal dimming, coronal wave)

Flare, post-eruptive arcade, coronal dimming

Coronal wave

2.1 Stealth CMEs

- No distinct low coronal signature
- D'Huys et al. (2014) 40 stealth events
- Some characteristics: slow, gradual, narrow events; preceding eruptions

(Robbrecht et al. 2009)

2.2 Research background

- 2 sympathetic events
- Zuccarello et al. (2012)
- Bemporad et al. (2012)

Date CME: 21 September 2009

Bemporad et al. (2012)

Steps

- MHD code: MPI-AMRVAC (parallelized Adaptive Mesh Refinement Versatile Advection Code)
- Parameter study => range of values
- Real parameters of the stealth CMEs found by D'Huys et al. (2014)
- Model results <-> observationally identified events
- MHD model for sympathetic stealth events

Code info

- Domain specs:
 - 2.5D
 - spherical
 - axisymmetric
 - non-equidistant
- Grid size used so far: 480x240 cells
- Numerical scheme: TVDLF
- CFL number: 0.5
- Limiter: minmod
- Method of keeping $\nabla \cdot \vec{B} = 0$: GLM
- 3 levels of refinement

3.1 Results from the parametric study

- transition VAC -> AMRVAC
- initial conditions: dipole + triple arcade
- parametric study => similar configuration
- parameters varied:
 - strength of the dipole and of the multipole;
 - the shift and width of the arcades;
 - shearing speed
- results in accordance with those of Zuccarello and Bemporad (sympathetic event obtained)

Initial conditions

Global dipole field +:

• VAC:
$$A_{\varphi} = \frac{A_0}{r^4 \sin \theta} \cos^2 \left(\frac{\pi (\lambda + shift)}{2 * \Delta \theta} \right)$$

MPI-AMRVAC:

$$\begin{cases} B_r = \frac{A_0}{r^5 \sin \theta} \frac{\pi}{\Delta \theta} \cos \left(\frac{\pi(\lambda + shift)}{2 * \Delta \theta} \right) \sin \left(\frac{\pi(\lambda + shift)}{2 * \Delta \theta} \right) \\ B_\theta = \frac{3A_0}{r^5 \sin \theta} \cos^2 \left(\frac{\pi(\lambda + shift)}{2 * \Delta \theta} \right) \end{cases}$$

Shearing profile

• $v_{\phi} = v_0(\alpha^2 - \Delta\theta^2)^2 \sin \alpha \sin \frac{\pi(t-t_0)}{\Delta t}$, $\alpha = \frac{\pi}{2} - \theta_0 - \theta$, $\theta = colatitude$, $\theta_0 = -0.7 \ rad$, (latitude of the southernmost polarity inversion line)

Propagation to 1AU

32h after the start of the shearing motions

at the equator

24,3° N of the equator

3.2 Results from the propagation to 1 AU

- stealth CME faster than the first one
- same magnetic field orientation

- ⇒ reconnection at the interface between the 2 flux ropes; at approx. 110 solar radii (45h after the start of the shearing motions), the second flux rope completely reconnects
- arrival of the CME at Earth: at approx. 45h after the eruption of the first CME
- deceleration and flattening of the resulting CME/flux rope

3.3 Future work

- Compare current results with observed signatures at 1AU
- Improve current simulations
- Deeper parameter study apply the shearing on different magnetic configurations
- Develop MHD model for individual stealth events

4. Conclusions

What?

- processes that cause and drive stealth CMEs
- difference from the typical solar eruptions
- a stealth CME model

How?

- observations and model predictions
- physical properties of these events (observational and model results)

Results

- transition from VAC to AMRVAC
- > parameter study => configurations and sympathetic CMEs similar to those of Bemporad et al. (2012) and Zuccarello et al. (2012)
- shearing speed, magnetic field strength -> decisive for stealth CME appearance
 - lower speed: only one CME, or no eruption at all
 - higher speed: multiple CMEs
- reconnection at the interface between the 2 flux ropes, at approx. 110 Rs
- > arrival of the CME at Earth: at approx. 45h after the eruption of the first CME
- deceleration and flattening of the resulting CME/flux rope

Thank you for your attention!

