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Electric interface condition for sliding and viscous contacts
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The first principles of electromagnetism impose that the tangential electric field must be continuous at the
interface between two media. The definition of the electric field depends on the frame of reference, leading to
an ambiguity in the mathematical expression of the continuity condition when the two sides of the interface do
not share the same rest frame. We briefly review the arguments supporting each choice of interface condition
and illustrate how the most theoretically consistent choice leads to a paradox in induction experiments. We then
present a model of sliding contact between two solids and between a fluid and a solid and show how this paradox
can be lifted by taking into account the shear induced by the differential motion in a thin intermediate viscous
layer at the interface, thereby also lifting the ambiguity in the electric interface condition. We present some
guidelines regarding the appropriate interface condition to employ in magnetohydrodynamics applications, in
particular for numerical simulations in which sliding contact is used as an approximation of the viscous interface
between a conducting solid and a fluid of very low viscosity such as in planetary interior simulations.
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I. INTRODUCTION

Solving problems of electromagnetism in continuous me-
dia requires imposing continuity conditions at interfaces
between regions with different properties. These interface
conditions can be derived axiomatically from Maxwell’s
equations in the integral form (e.g., [1,2]). From the same
starting point, one can derive Maxwell’s equations in their
differential local form by making use of the divergence and
curl theorems. Some textbooks prefer to work backward from
there and attempt to derive interface conditions by integrat-
ing the differential Maxwell equations across the interface
(e.g., [3]). While this is perfectly fine in most situations,
it leads to difficulties when the two sides of the interface
are not at rest with respect to each other. Such a situation
occurs in deforming media for which careful inspection of
Maxwell’s equations in their “material form” shows that it
is the tangential electric field measured in the instantaneous
rest frame—equivalent to the electromotive force per unit
length—on each side of the interface that must be continuous
[4] (see also [5,6]). This condition is relevant to electroelastic
applications [7]. It is also the one commonly used in plasma
physics [8–10] (see also [11]).

Recently, Satapathy and Hsieh [12] used two rail gun
experiments to confirm the validity of that condition at the
interface between two solids in sliding contact. They showed
that the commonly used alternative interface condition, which
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imposes that the tangential electric field measured in the lab-
oratory frame is continuous, failed to reproduce experimental
data. This result is in contrast to those of other classical
experiments, in which the latter was found to be valid (e.g.,
[13]). The present paper proposes to address this tension.

In Sec. II we state the problem in the mathematical form
and briefly review the arguments in favor of both interface
conditions. We also illustrate how the more theoretically con-
sistent choice of boundary condition leads to a paradox in a
simple rotating cylinder induction experiment. In Sec. III we
introduce a simple model of interface and show how the para-
dox is lifted when one takes into account the role of shears in
an intermediate viscous layer between the two media. Finally,
in Sec. IV we extend the model to the case of a solid-fluid
interface and show how the fluid boundary layer naturally
serves the role of an intermediate layer in that case. We present
some conclusions and guidelines pertaining to magnetohydro-
dynamics applications and numerical simulations in Sec. V.

II. THEORETICAL MOTIVATION

In this section, we review the electric boundary condition
between two media from a theoretical point of view. We then
illustrate its different interpretations using a simple example.

A. Electric boundary condition

At the interface between two media, the electric field E
satisfies the following junction condition (e.g., [1,2]):

n̂ × [E]+− = 0, (1)

where the notation [·]+− denotes the jump in the quantity
in brackets across the interface with unit normal vector n̂.
Equation (1) is ambiguous as long as one does not specify
the frame of reference. Indeed, in the nonrelativistic limit, the
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TABLE I. Interface conditions used throughout this work.

Label Condition Equivalent form Eqs. in main text

CI n̂ × [E]+− = 0 n̂ × [η∇ × B]+− = (n̂ · B)[v]+− Eqs. (1) and (4) with n̂ · v = 0
CII n̂ × [E + v × B]+− = 0 n̂ × [η∇ × B]+− = 0 Eqs. (2) and (5)

electric field E′ measured in the frame moving with velocity
v is related to that measured in the laboratory frame E via
E′ = E + v × B, where B is the magnetic field, which has the
same value in both frames, i.e., B = B′. A careful inspection
of Maxwell’s equations in the integral form shows that Eq. (1)
should, in fact, read [5,6](see also [11])

n̂ × [E′]+− = 0

⇔ n̂ × [E + v × B]+− = 0. (2)

For convenience, we provide our own derivation of the above
in the Appendix. Equations (1) and (2) are equivalent only
when the two media are at rest relative to each other, i.e., when
[v]+− = 0. In particular, they are incompatible in situations
where the two media are in sliding contact. In that case,
Satapathy and Hsieh [12] recently demonstrated the validity
of Eq. (2) based on two rail gun experiments. Nonetheless,
Eq. (1) seems to be favored in most applications. A case
in point is the experiment of Herzenberg and Lowes [13],
who studied induction in a rotating cylinder permeated by a
uniform magnetic field.

In the remainder of this section, we illustrate the difference
between Eqs. (1) and (2) using a simple model resembling the
experiment of Herzenberg and Lowes. For this purpose, we
need the following additional condition, which is always true:

n̂ · [B]+− = 0. (3)

It will also be useful to rewrite Eqs. (1) and (2) to avoid
explicit mentions of the electric field. Using Ohm’s law,
j = σ (E + v × B), where j is the electric current density and
σ is the electric conductivity, combined with Ampère’s law
in the pre-Maxwell form relevant in magnetohydrodynamics
applications [1], ∇ × B = μj, where μ is the magnetic per-
meability, Eq. (1) becomes

n̂ × [η∇ × B]+− = (n̂ · B)[v]+− − [(n̂ · v)B]+−, (4)

where we used Eq. (3) and we introduced the magnetic diffu-
sivity η ≡ (σμ)−1. In this work, we focus on the case where
(n̂ · v) = 0; that is, we take the boundary as static and imper-
meable to the velocity, allowing us to discard that last term in
(4). By contrast, Eq. (2) reduces to

n̂ × [η∇ × B]+− = 0. (5)

Table I summarizes the interface conditions used throughout
this work.

Finally, we also make use of the following definition of the
surface current density js in terms of the tangential component
of the magnetic field [6]:

n̂ × [B/μ]+− = js. (6)

B. Paradox: Induction in a solid cylinder

We focus on the simple model introduced by Moffatt [5]
and shown in Fig. 1(a) (see also [14]). A cylindrical region
filling the domain s ∈ [0, R], with s being the cylindrical radial
coordinate, rotates steadily around the z axis at the angular
velocity �. The whole volume is permeated by a transverse
uniform external magnetic field B0 along the x direction. For
simplicity, we assume that the cylinder and surrounding space
have equal magnetic diffusivities η. We solve the induction
equation:

∂t B = ∇ × (v × B) + η∇2B, (7)

assuming ∂t B = 0 (steady regime). The system is then con-
trolled by the value of the dimensionless magnetic Reynolds
number, here defined as Rm ≡ �R2/η. The solution for the
magnetic field can be advantageously expressed as the real
part of B = ∇ × (Azẑ), with (see [5] for details)

Az = B0eiϕ

⎧⎨
⎩c1J1

(
(1 − i)

√
Rm
2

s
R

)
, s � R,

c2s−1 − s, s > R,
(8)

where ϕ is the cylindrical azimuthal coordinate and Jn de-
notes the Bessel function of degree n. The two integration
constants, c1 and c2, are determined by boundary conditions.
Equation (3) yields a single relation between c1 and c2, and a
second one is needed.

In the steady regime considered, E = 0 both inside and
outside of the cylinder, as can be checked readily with Eq. (8)
combined with Ampère’s and Ohm’s laws. Condition CI
therefore provides no constraint on the solution. In that same
regime, it is then typical to consider that any surface currents
at the interface have had ample time to diffuse into the volume
such that, from Eq. (6), n̂ × [B]+− = 0. One then finds

c1 = − 2R

ξJ0(ξ )
, c2 = R2

(
1 − 2J1(ξ )

ξJ0(ξ )

)
, (9)

where we have defined ξ = (1 − i)(Rm/2)1/2. Figure 1(b)
shows the corresponding solution for Rm = 10. By contrast,
condition CII does provide a constraint on the solution and
leads to

c1 = 0, c2 = R2. (10)

The corresponding solution is shown in Fig. 1(c). The most
striking feature is the absence of magnetic induction inside the
cylinder, which behaves as a perfect conductor [as confirmed
by taking the limit Rm → ∞ in Eq. (9)] even though we made
no assumption about the value of Rm in arriving at Eq. (10).
This solution also implies the existence of surface currents,
as can be seen by inserting it back into Eq. (6), a feature that
seems unphysical in the steady regime.
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FIG. 1. (a) A rotating cylinder is immersed within a transverse uniform background magnetic field. (b) Solution for Rm = 10, based on
condition CI and assuming continuity of the tangent magnetic field at the boundary. Streamlines show the magnetic field; colors show the
normalized value of the axial current density, with blue and red pointing, respectively, inside and outside the page. (c) Same as in (b), but based
on condition CII and allowing for surface currents. The internal magnetic field is zero in that case for all values of Rm, and the current density
is restricted to a vanishingly thin sheet at the cylinder’s surface.

The inadequacy of condition CII to reproduce the experi-
mental results of Herzenberg and Lowes can be traced back
to the assumption that the rotating cylinder and its surround-
ings are in sliding contact. In the experiment, the cylinder
maintains electric contact with its supporting apparatus via a
very thin layer of mercury which also serves as a lubricant.
Because of its finite viscosity, this intermediate layer becomes
the host of intense shears during rotation. Section A 3 of the
Appendix gives a formal derivation of the appropriate bound-
ary condition in the presence of such a transition layer. In the
following section we take a closer look at the role played by
shears at the interface.

III. THE ROLE OF SHEAR AT THE INTERFACE

We consider the simple toy model depicted in Fig. 2 that
represents the interface between two conducting rigid me-
dia. The whole volume is permeated by a uniform external
magnetic field B0 pointing along the normal to the interface
chosen z axis, and the upper medium oscillates tangentially
at a prescribed frequency ω, so that the velocity is written as

FIG. 2. Local model of the interface between two semi-infinite
conducting solids sliding on top of each other. The presence of a thin
viscous layer between the two solids (in blue) radically affects the
solution (see the text).

v = vx̂, with

v =
{

Re[ṽe−iωt ], z � 0,

0, z < 0.
(11)

For simplicity, we take the magnetic diffusivity to be constant
in the whole volume. We also focus exclusively on the region
near the interface, so that we can safely approximate both
sides as semi-infinite. The total magnetic field is written as
B = B0 + b, where b is the perturbation induced by the oscil-
lations which must obey the induction (7). We first look at the
case where the thin viscous layer (in blue in Fig. 2) is absent.

The induced field must point in the same direction as the
velocity, and its magnitude can depend on only z because of
symmetry. We thus write b = bx̂, with

b =
{

Re[b̃+ei(λ+z−ωt )], z � 0,

Re[b̃−ei(λ−z−ωt )], z < 0.
(12)

We obtain λ+ and λ− by inserting the above into the induction
(7) and imposing regularity of the solution at z → ±∞, giving

λ± = ±1 + i

δ∗
, (13)

where δ∗ = √
2η/ω is the magnetic skin depth.

Finally, the values of the constants, b̃+ and b̃−, depend on
our choice of boundary conditions. In an attempt to make
sense of the paradox in Sec. II B, when condition CII is im-
posed, we consider this condition first. In the present situation
this gives the constraint

b̃+ = −b̃−. (14)

Again, we see that the above equation strictly prohibits the
continuity of the tangential magnetic field across the interface,
except in the trivial case where b̃+ = b̃− = 0, and there is no
induction between the two media. On the other hand, condi-
tion CI can be rewritten here as

[η∂zb + B0v]+− = 0. (15)
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FIG. 3. Local model of the solid-fluid interface. The finite vis-
cosity of the fluid causes the appearance of a thin boundary layer in
the fluid region represented by the dotted area (see main text).

This condition combined with the requirement of zero surface
current, b̃+ = b̃−, gives a nonzero value for the induced field
on both sides:

b̃± = (1 + i)
B0ṽ

4η
δ∗. (16)

From the above, we see that condition CI is clearly incom-
patible with condition CII because they lead to very different
solutions. Moreover, it would seem that the former should be
preferred over the latter on empirical grounds, which is at odds
with first principles, as well as plasma physics applications us-
ing condition CI. There is, however, a simple way to motivate
the use of that condition physically if we consider the slightly
modified situation where the thin blue intermediate viscous
layer in Fig. 2 is present. We can model this by substituting the
expression for the velocity (11) with one valid for the whole
domain:

v → �(z)v, (17)

where �(z) is the Heaviside distribution satisfying �(z �
0) = 1 and �(z < 0) = 0. Plugging the result into Eq. (7),
keeping only linear terms in v and b, and using the identity
d�/dz = δ(z) give

∂t b = B0δ(z)v + η∇2b, (18)

where δ(z) is the Dirac distribution. Integrating Eq. (18) over
an infinitesimal line segment across the interface (see [15])
gives back Eq. (15), from which Eq. (16) follows. This ar-
gument demonstrates the important role of viscous layers at
the interface between two solids. It is valid as long as we can
reasonably approximate that layer as infinitely thin but breaks
down in situations where the conducting viscous fluid has a
finite volume, to which we now turn.

IV. SHEAR LAYER AT A SOLID-FLUID INTERFACE

We consider the situation depicted in Fig. 3. It is analogous
to that in Sec. III, except that the bottom region is now fluid
and has finite viscosity. The flow velocity v in the fluid region
is governed by the momentum equation:

∂t v + (v · ∇)v = −∇P

ρ
+ 1

ρμ
(∇ × B) × B + ν∇2v, (19)

where ν is the kinematic viscosity, P is the pressure, and ρ is
the mass density taken to be constant. B is the total magnetic
field governed by the induction (7). We proceed as before

FIG. 4. Thickness of the boundary layer at the fluid-solid inter-
face for parameters typical of Earth’s upper fluid core as a function of
the frequency (in cycles per day). The dashed line shows the steady
limit corresponding to the Hartmann layer thickness δH = √

νη/vA.

and write B = B0 + b. The magnetic perturbation assumes the
same form as Eq. (12). The fluid velocity has a similar form
but is limited to the fluid region, so the whole velocity field
v = vx̂ can be summarized as

v =
{

Re[ṽ+e−iωt ], z � 0,

Re[ṽ−ei(λ−z−ωt )], z < 0.
(20)

To linear order in v and b, Eqs. (7) and (19) may then be
written in the following matrix form:(

vAλ
√

ρμ ω + iλ2η

ω + iλ2ν vAλ/
√

ρμ

)(
b̃
ṽ

)
= 0, (21)

where we have dropped the superscripts from ṽ−, b̃−, and
λ− for readability and we have introduced vA = B0/

√
ρμ,

representing the Alfvén velocity inside the fluid [16]. The
determinant of the matrix in Eq. (21) must be equal to zero.
Solving for λ, we find (see [17])

λ2 = −
(

v2
A

2ην
− iω

η + ν

2ην

)

±
√

ω2

ην
−

(
ω

(η + ν)

2ην
+ i

v2
A

2ην

)2

. (22)

The numerical values of these numbers depend on the pa-
rameters. With geophysical applications in mind, we take
values that are typical for Earth’s core: ρ = 104 kg/m3, μ =
4π × 10−7 H/m, η = 0.5 m2/s, ν = 10−6 m2/s, and vA =
4.5 × 10−3 m/s.

In total, there are four solutions for λ which we parametrize
as (reintroducing the superscript)

λ− = k − iδ−1, (23)

where k and δ are real numbers representing the wave number
and the decay length, respectively. We keep only solutions sat-
isfying δ > 0, which ensures that the perturbations converge
to zero at z → −∞. Among the two remaining solutions,
there is one for which k is large and δ is small, representing a
rapidly decaying short wavelength plane wave. For the other,
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FIG. 5. Top: velocity and magnetic field perturbations as a function of depth for three values of the frequency (in cycles per day). Bottom:
relative jump in velocity and magnetic field. The black dashed lines indicate the depth of the Hartmann layer in the steady limit (see Fig. 4).

k is small, and δ is large, representing a slowly decaying plane
wave with long wavelength:

Boundary layer: {ṽ−
1 , b̃−

1 }, λ−
1 = k1 − iδ−1

1 , (24a)

Traveling wave: {ṽ−
2 , b̃−

2 }, λ−
2 = k2 − iδ−1

2 , (24b)

with δ1 � δ2 and k1 � k2. In the first solution, δ1 corresponds
to the thickness of the boundary layer illustrated by the dotted
area in Fig. 3. Its thickness is shown in Fig. 4 as a function of
the frequency, given in cycles per day (cpd). It is maximum
in the steady limit, where it is equal to the Hartmann layer

thickness δH = √
νη/vA (dashed line). Like for the solid

interface, the constants ṽ−
1 , b̃−

1 , ṽ−
2 , and b̃−

2 , as well as b̃+ for
the upper solid region, are set by the boundary conditions. The
values of b̃−

1 and b̃−
2 are related to ṽ−

1 and ṽ−
2 by Eq. (21),

so that only three constraints are needed. One is given by
the requirement that the velocity be continuous across the
interface (no slip). This renders the condition on the tangential
electric field unambiguous, the latter serving as our second
constraint. Finally, we assume that the tangential magnetic
field is continuous at the interface (no surface currents). In
our simple model, these three constraints are written as

No slip: ṽ−
1 + ṽ−

2 = ṽ+, (25a)

Current continuity, CI and CII are equivalent: λ−
1 b̃−

1 + λ−
2 b̃−

2 = λ+b̃+, (25b)

Magnetic field continuity: b̃−
1 + b̃−

2 = b̃+. (25c)

The solution is then completely determined once we set the
value of ṽ+. For simplicity, we take ṽ+ = vA, which matches
well the relative velocity between Earth’s core and mantle
induced by Earth’s precession [18].

Figures 5(a) and 5(b) show the magnitude of the velocity
and magnetic field as a function of depth for three values of the
frequency. The vertical dashed line on each plot indicates the
width of the Hartmann layer in the steady limit (see Fig. 4).
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FIG. 6. Top: electric current density divided by electric conductivity and electric field near the interface. Bottom: relative jump in current
density and electric field. The black dashed lines indicate the depth of the Hartmann layer in the steady limit (see Fig. 4).

While the effect of this boundary layer is clearly visible on
the velocity profile, it is hardly discernible in the magnetic
field perturbation. This is the expected behavior for fluids
with η � ν, such as in Earth’s core [19,20]. In this case, the
velocity of the flow just below the boundary layer converges
quickly to its value in the bulk of the fluid—the so-called
free stream—which is here simply v = 0. In order to better
quantify changes across the boundary layer, we introduce the
following notation (see [21,22]):

[[b]] ≡ b|z=0 − b, (26)

with similar notation for v and other quantities. The jumps in
v and b are shown in Figs. 5(c) and 5(d) as a function of depth,
in absolute value and normalized by the values of those fields
at the interface.

Finally, we can use our simple toy model to probe whether
condition CI or CII better represents the behavior of the
electric field near the interface. Figures 6(a) and 6(b) show
the magnitude of the electric current density divided by the
electric conductivity, j/σ = E + v × B0, and of the electric
field E as a function of depth for three values of the frequency.
Figures 6(c) and 6(d) show the jump in these quantities di-
vided by their values at the interface. We can see that the

current density varies a lot across the boundary layer, whereas
the electric field remains almost constant. We can express this
mathematically as

[[η∂zb + B0v]] ≈ 0, (27)

which is valid within the boundary layer. Equation (27) is
analogous to Eq. (15) derived in Sec. III for the viscous solid-
solid interface, which we found to be equivalent to condition
CI. In this light, the latter can be perceived as the limit case of
Eq. (27) when the boundary layer is infinitely thin. This result
proves the validity of condition CI at a solid-fluid interface
when it is understood as a condition relating the values of the
fields inside the solid layer to their values at the top of the free
stream, i.e., just below the thin boundary layer.

As we argued in Sec. III, condition CI automatically ac-
counts for viscous shears at the interface and their effect on
the fields. We can check that this is also true for the solid-
fluid interface by slightly altering the above model, replacing
the continuity (no-slip) condition on the velocity field at the
interface with the condition on its gradient: [∂zv]+− = 0, which
amounts to imposing that the shear stresses are continuous
across the interface. As the upper medium is here assumed to
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FIG. 7. Velocity and electric current density near a solid-fluid interface using the boundary conditions (28a) and (28b) (solid curves)
compared to the exact solution in Sec. IV (dashed curves).

be perfectly rigid, the viscous stresses in the fluid must vanish
at the boundary; this is the so-called stress-free condition.

More specifically, this amounts to replacing Eqs. (25a) and
(25b) by

Stress free: λ−
1 ṽ−

1 + λ−
2 ṽ−

2 = 0, (28a)

Electric field continuity (condition CI): η(λ−
1 b̃−

1 + λ−
2 b̃−

2 − λ+b̃+) = iB0(v−
1 + v−

2 − v+), (28b)

with Eq. (32) reducing to Eq. (25b) only in the no-slip hypoth-
esis. Figure 7 shows the solution for v and the magnitude of
j/σ using Eqs. (28a) and (28b). The dashed curves correspond
to the exact solution of Sec. IV given for comparison. We
see that, even though shears have been removed from the
model, the exact solution rapidly becomes equivalent to the
approximate solution outside of the boundary layer by virtue
of condition CI alone. The approximate magnetic and electric
fields are undistinguishable from the exact profiles shown in
Figs. 5(b) and 6(b) and are therefore not repeated here.

V. CONCLUSION

The continuity condition on the tangential part of the
electric field at the interface between two media depends
on the details of the problem. In situations where the two
sides are in true sliding contact, theoretical as well as exper-
imental considerations indicate that condition CII should be
preferred over condition CI. We have shown how the latter
becomes relevant whenever an intermediary viscous layer is
present between the two media. For a solid-fluid interface,
this layer corresponds to the fluid boundary layer. Therefore,
both geophysical and plasma physics applications (just to
name a few) are equally justified in their respective usage
of conditions CI and CII, with the former operating under
the often implicit assumption that there are boundary layers
present.

In practical fluid dynamics computations, the very small
thickness of such layers can be challenging to model. This is
certainly true when dealing with Earth’s fluid core, in which
case it is sometimes useful to get rid of the boundary layer

entirely by assuming that the free stream extends all the way
to the interface, thereby approximating the sharp jump in the
flow velocity at the interface as a true discontinuity. In that
case, we showed in Sec. IV that using condition CI guarantees
that the approximate solution will be close to the physical
solution if the boundary layer of the latter is sufficiently thin
(Fig. 7), even though the use of condition CI is not strictly
self-consistent from a theoretical point of view.

In summary, in order to decide which condition to use in a
given application, one should start by assessing the presence
and thickness of viscous layers at the interface considered.
This assessment and its consequences for practical studies
of the magnetohydrodynamics of Earth’s fluid core will be
presented in a future work.
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FIG. 8. (a) The circuit contour C enclosing the surface S intersects the surface of discontinuity between two regions of space perpen-
dicularly along the straight line σ . (b) It is always possible to decompose each of C and S into two parts if we specify appropriate junction
conditions at σ (see the text).

APPENDIX: DERIVATION OF THE ELECTRIC
BOUNDARY CONDITION

1. Faraday’s law of induction

Faraday’s law of induction is related to the rate of change
of the magnetic field flux through the (open) surface S to
the electromotive force, acting on that surface, with the latter
being defined as the integral of the Lorentz force per unit
charge over the enclosing contour C:

− d

dt

∫
S(t )

B · n̂dS =
∮
C(t )

(E + v × B) · t̂dl, (A1)

where n̂ and t̂ denote the unit vectors normal to S and tangent
to C, respectively. In general, these two domains may be time
dependent, as reflected in the above notation. This prevents
simply swapping the order of the integral and time derivative
in Eq. (A1). Instead we have, based on Reynolds’s transport
theorem (see, e.g., [23]),

− d

dt

∫
S(t )

B · n̂dS = −
∫
S(t )

(
∂B
∂t

+ (∇ · B)v
)

· n̂dS

+
∮
C(t )

(v × B) · t̂dl. (A2)

Inserting the result back into Eq. (A1) and using ∇ · B = 0,
we find

−
∫
S(t )

∂B
∂t

· n̂dS =
∮
C(t )

E · t̂dl. (A3)

At this point, we must emphasize that Eq. (A2) is valid only
if both B and v are differentiable functions throughout the
surface S . If, in addition, the electric field E is continuous
throughout the same surface, we may use Stokes’s theorem,
which in the present context reads∮

C(t )
E · t̂dl =

∫
S(t )

∇ × E · n̂dS. (A4)

Combining Eqs. (A3) and (A4), we finally arrive at∫
S(t )

(
∂B
∂t

+ ∇ × E
)

· n̂dS = 0. (A5)

The above must be valid for any surface S (t ), which implies
that

∇ × E = −∂B
∂t

, (A6)

which is one of Maxwell’s equations in the local (differential)
form. Crucially, the above derivation shows that Eq. (A6) is
independent of the reference frame. It also explains why it
would be inconsistent to try to replace E by E + v × B in the
above equation. Doing so would miss the effect induced by
the motion of the surface element that is implicit in Eq. (A6)
but explicit in Eq. (A1). This makes the latter generally more
suited for deriving boundary conditions.

2. Electric boundary condition

In the previous section, we assumed that the three vectors
v, B, and E are continuous throughout the whole domain. We
now look at what happens when this is not the case by consid-
ering the situation in Fig. 8(a), where the surface S intersects
the interface between two regions of space perpendicularly
along the dashed line σ with unit normal and tangent vectors
n̂ and t̂, which should not be confused with the previously
introduced “dummy” vector variables n̂ and t̂ . If v, B, and E
are piecewise continuous on both sides of the surface, we can
do as in Fig. 8(b) and divide the surface S into two parts, S+
and S−, such that S = S+ ∪ S−, and we have the following
property:∫

S
A · n̂dS =

∫
S+

A+ · n̂dS +
∫
S−

A+ · n̂dS, (A7)

which is true for any vector A that is piecewise continuous on
S+ and S−, where its value is denoted formally as A+ and A−,
respectively. We have to be a little more careful in combining
contour integrals [24]:∮

C
A · t̂dl =

∮
C+

A+ · t̂dl +
∮
C−

A− · t̂dl −
∫

σ

[A]+− · t̂dl,

(A8)

where we have replaced t̂ by its constant value, t̂, in the last
term, as shown in Fig. 8(b), and we have used the following
notation introduced in the main text:

[A]+− ≡ (A+ − A−)|σ . (A9)

In the special case where A is continuous throughout the
whole domain, the two values, A+ and A−, converge to a
single limit at σ , and the last term in Eq. (A8) is zero.

Inserting Eqs. (A7) and (A8) into Faraday’s law (A1), we
may then repeat the exercise in the previous section to reduce
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FIG. 9. Similar to Fig. 8(b), but with an intermediate transition
layer of thickness δ with cross section Sδ enclosed by the con-
tour Cδ .

the contour integrals on both sides of the interface into surface
integrals which may then be combined into a single integral
using Eq. (A7). The final result is∫

S(t )

(
∂B
∂t

+ ∇ × E
)

· n̂dS =
∫

σ

[E + v × B]+− · t̂dl.

(A10)

Equation (A10) must be valid regardless of our choice of
surface S . In particular, taking the limit S → 0, we must have

[E + v × B]+− · t̂ = 0, (A11)

which is equivalent to condition CII.

3. Electric boundary condition with a transition layer

We now turn to the situation represented in Fig. 9, where,
in addition to the two regions S+ and S−, there is an in-
termediate region of width δ with cross section Sδ enclosed
by the contour Cδ , within which the values of all fields
transition smoothly between those of S+ and S− so that
the fields are continuous everywhere. We may thus write
S = S+ ∪ Sδ ∪ S−, and in analogy to Eqs. (A7) and (A8),

we have∫
S

A · n̂dS =
∫
S+

A+ · n̂dS +
∫
S−

A+ · n̂dS +
∫
Sδ

Aδ · n̂dS,

(A12)∮
C

A · t̂dl =
∮
C+

A+ · t̂dl +
∮
C−

A− · t̂dl +
∮
Cδ

Aδ · t̂dl.

(A13)

Note that there is no boundary term analogous to the last
one in Eq. (A8) in Eq. (A13) as we have assumed that A
is continuous everywhere. Inserting the above equations into
Faraday’s law (A1), we may use Reynolds’s theorem in all
three regions in combination with Eq. (A12) to arrive at

−
∫
S(t )

∂B
∂t

· n̂dS =
∮
C+(t )

E+ · t̂dl +
∮
C−(t )

E− · t̂dl

+
∮
Cδ (t )

Eδ · t̂dl. (A14)

If, at this point, we assume that the intermediate transition
region is very thin, corresponding to the limit δ → 0, the last
term in Eq. (A14) goes to zero. Then, in order to combine the
two remaining contour integrals on the right-hand side, we
must use the formula in Eq. (A8) to account for a possible
discontinuity of E at the junction between the two regions
which, in the limit δ → 0, is located at σ . Using Stokes’s
theorem, we arrive at∫

S(t )

(
∂B
∂t

+ ∇ × E
)

· n̂dS =
∫

σ

[E]+− · t̂dl, (A15)

where we have again replaced t̂ by its constant value t̂. By
analogy with Eq. (A10), we see that Eq. (A15) implies that

[E]+− · t̂ = 0, (A16)

which is equivalent to condition CI.
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