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A B S T R A C T

Synchronous binary asteroids can experience libration about their tidally-locked equilibrium, which will
result in energy dissipation. This is an important topic to the Asteroid Impact and Deflection Assessment,
where excitation caused by the DART kinetic impact in the Didymos binary asteroid system may be reduced
through dissipation before Hera arrives to survey the effects of the impact. We develop a numeric model for
energy dissipation in binary asteroids to explore how different system configurations affect the rate of energy
dissipation. We find tumbling within the synchronous state eliminates a systematic trend in libration damping
on short timescales (several years), but not over long times (hundreds of years) depending on the material
conditions. Furthermore, damping of libration, eccentricity, and fluctuations in the semimajor axis are primarily
dependent on the stiffness of the secondary, whereas the semimajor axis secular expansion rate is dictated by
the stiffness of the primary, as expected. Systems experiencing stable planar libration in the secondary can see
a noticeable reduction in libration amplitude after only a few years depending on the stiffness of the secondary,
and thus dissipation should be considered during Hera’s survey of Didymos. For a very dissipative secondary
undergoing stable libration, Hera may be able to calculate the rate of libration damping in Dimorphos and
therefore constrain its tidal parameters.
1. Introduction

The Asteroid Impact and Deflection Assessment (AIDA) is a col-
laboration supported by NASA and ESA to test the feasibility of a
kinetic impactor to deflect a small asteroid for the purpose of planetary
defense (Cheng et al., 2018). Two missions will combine results to
produce the most accurate knowledge possible on the first kinetic
impact of an asteroid: NASA’s DART (Double Asteroid Redirection
Test), which performed the actual kinetic impact (Rivkin et al., 2021),
and ESA’s Hera, which will assess the effectiveness of the impact several
years later (Michel et al., 2022). The target of the impact is Dimorphos,
the secondary in the Didymos binary asteroid system. By impacting
Dimorphos, DART changeed the mutual orbit period around Didymos,
and ground-based measurements of the orbit period change will reveal
how much momentum was transferred to Dimorphos. Approximately
4 years after the DART impact, Hera is scheduled to rendezvous with
the Didymos system to perform a detailed analysis of the post-impact
system, making several key measurements.

∗ Corresponding author.
E-mail address: alex.meyer@colorado.edu (A.J. Meyer).

The degree to which the system’s dynamics will evolve through
energy dissipation between the DART impact and Hera’s arrival remains
an open question for AIDA. While this window is only around 4 years,
a rubble-pile structure – like Didymos is hypothesized to be based on
earlier dynamics and geological studies (Agrusa et al., 2022b; Walsh,
2018; Walsh et al., 2008; Jacobson and Scheeres, 2011a) – may be
very efficient at dissipating energy, and thus this problem warrants
attention. The question of energy dissipation after the DART impact
and prior to Hera’s rendezvous with Didymos is necessary in order to
maximize the scientific and practical return of the AIDA collaboration.
As Hera characterizes the spin state of Dimorphos, it is important to
understand how the current spin state has changed since the impact
in order to fully comprehend the effects of the DART impact. Ignoring
dissipation in the system may lead to an incorrect estimation of the
efficacy of a kinetic impactor during Hera’s survey. While the scientific
implications of this work extend beyond AIDA and Didymos to binary
asteroid dynamics in general, we focus our analysis to this application
vailable online 29 October 2022
019-1035/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.icarus.2022.115323
Received 2 September 2022; Received in revised form 17 October 2022; Accepted
 19 October 2022

http://www.elsevier.com/locate/icarus
http://www.elsevier.com/locate/icarus
mailto:alex.meyer@colorado.edu
https://doi.org/10.1016/j.icarus.2022.115323
https://doi.org/10.1016/j.icarus.2022.115323
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2022.115323&domain=pdf


Icarus 391 (2023) 115323A.J. Meyer et al.

i
p
e
p
w
t

v
s
s
a
e
t
u

given its current relevance and the wealth of analysis on Didymos and
the DART impact in the literature.

While binary asteroids provide an ideal test site for planetary de-
fense missions given their short mutual orbit periods (Cheng et al.,
2018), they also offer a chance to study the unique dynamics of the
full 2-body problem (F2BP). Given the asteroids’ close proximity and
generally asymmetric shapes (Pravec et al., 2016), their orbital motion
is strongly coupled with their attitude, leading to complex dynam-
ics (Maciejewski, 1995; Scheeres, 2006, 2009). Through this strong
coupling, the bodies’ spins and mutual orbit will evolve concurrently
while energy dissipation occurs. Additionally, spin–orbit coupling can
lead to attitude instabilities as a result of orbit perturbations such as
the DART impact (Agrusa et al., 2021).

There are two main mechanisms of energy dissipation we will con-
sider in this work, both stemming from the deformation of the bodies.
The first is tidal torque, in which the tidal forces of both bodies act to
move the system into a synchronous equilibrium (Murray and Dermott,
1999; Goldreich and Sari, 2009; Taylor and Margot, 2010). The second
is non-principal axis (NPA) rotation, in which rotation about any axis
other than the major principal axis will dissipate energy until the
major principal axis is aligned with the angular momentum (Burns
et al., 1973; Breiter et al., 2012; Molina et al., 2003; Ershkov and
Leshchenko, 2019; Pravec et al., 2005). Both these mechanisms will
drive the system toward a configuration in which the two asteroids
are mutually tidally locked, with their spin angular momentum vec-
tors aligned with their major principal axes and the orbit angular
momentum vector (Taylor and Margot, 2011). We call this state the
doubly-synchronous equilibrium.

While many studies focus on energy dissipation in the two-body
problem, they generally ignore the specific dynamical regime that Didy-
mos will inhabit after the DART impact: a system which is generally
synchronous but with nonzero libration of the secondary (Taylor and
Margot, 2010; Goldreich and Sari, 2009). Here we define libration as
any angular deviation of the secondary’s long axis away from the tidally
locked configuration, but smaller than 90◦ so the secondary remains
on-average synchronous. Generally there are two modes of libration:
free and forced (Murray and Dermott, 1999). While forced libration is
driven by eccentricity, free libration is governed by the average libra-
tion over an orbit period and is thus eccentricity-agnostic (Tiscareno
et al., 2009). Given the strongly coupled nature of binary asteroids,
we make no distinction between these two modes and simply adopt
the physical libration angle. This study will focus exclusively on this
dynamic state and so also carries scientific merit beyond the specific
application of the AIDA collaboration. More recently, Efroimsky (2018)
analyzed energy dissipation in a tidally perturbed librating body. This
is the same regime we are interested in here, but we attempt to relax
the small-libration assumption from that work and extend results to
binary asteroids, which orbit much closer than planet–moon systems.
Another noteworthy study is that of Jacobson and Scheeres (2011a),
who apply a tidal torque model to binary asteroids. However, this
analysis is limited to 2 dimensions, whereas we are interested in
the full 3 dimensional dynamics. Quillen et al. (2020, 2022) study
tidal dissipation in coupled systems with some attention spent on the
libration state, and our work falls in a similar vein but we focus on how
different shapes and stiffness of the secondary affect the dissipation
process.

Since the main motivation of this study is the AIDA collabora-
tion, we first provide background on Didymos, the DART impact,
and previous analyses on the post-impact dynamics in Section 2. We
then derive our dynamical model, including dissipation mechanisms, in
Section 3. Results on energy dissipation are presented in Section 4, and
we validate these results by comparing with a higher-fidelity numeric
model in Section 5. The implications for Hera over the short-term
are investigated in Section 6. In Section 7 we discuss the possible
implications of the BYORP effect, and in Section 8 we investigate how
the dissipation behavior depends on the material parameters. Finally,
2

we present a discussion and our conclusions in Section 9. t
2. Background

We will apply our dissipation model to the Didymos system, which
we nominally assume is in a singly-synchronous equilibrium prior to
any perturbation, with the secondary’s rotation period equal to the
orbit period. The rationale for this assumption is outlined in Richardson
et al. (2022). To calculate this equilibrium we adopt the method de-
scribed in Agrusa et al. (2021) and iterate the system bulk density until
the stroboscopic orbit period matches the observed value. We define
the stroboscopic orbit period as the time required for the secondary
to traverse 360◦ relative to an inertial observer, akin to a lightcurve
observation. This approach means we have developed our own in-
dependent estimate of the system density rather than using values
derived from observations, although our density lies within the error
bars of the observed value (Naidu et al., 2020; Scheirich and Pravec,
2022). We calculate the stroboscopic orbit period using the method
outlined in Meyer et al. (2021). The resulting equilibrium system has
the parameters outlined in Table 1. We will assume a triaxial shape
for the secondary, but note changing the axis ratios of Dimorphos does
not appreciably affect the equilibrium parameters of the system. While
keeping the mean radius of Dimorphos constant, we will vary its axis
ratios (𝑎∕𝑏 and 𝑏∕𝑐, with 𝑎 > 𝑏 > 𝑐) to investigate how the shape of
Dimorphos affects the energy dissipation rate.

In this work we will focus on two shapes of the secondary, one
with 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1, and the other with 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3.
In conjunction with the mean radius, we can solve for the semiaxes
that define the ellipsoid, as well as the dimensionless shape parameter
𝑆 defined as

𝑆 = 𝐵 − 𝐴
𝐶

(1)

where 𝐴, 𝐵, and 𝐶 are the three principal moments of inertia of the
ellipsoid corresponding to the axes 𝑎, 𝑏, and 𝑐, respectively. Table 2
gives the dimensions of the two ellipsoids we will primarily use as
Dimorphos, as well as their shape parameter 𝑆.

The DART impact will push Dimorphos out of the equilibrium
state (Meyer et al., 2021; Agrusa et al., 2021). The impact can be
quantified by the momentum enhancement factor known as 𝛽, which
is defined as the ratio of the true system momentum change to the
momentum carried by the impactor. Mathematically, this is described
as

𝛽 =
𝑝𝑡𝑟𝑢𝑒

𝑝𝑖𝑚𝑝𝑎𝑐𝑡𝑜𝑟
. (2)

𝛽 can be converted into a change in velocity using the relationship

𝛥𝐯 =
𝑀𝑖𝑚𝑝𝑎𝑐𝑡𝑜𝑟

𝑀𝐵
(𝐮 + (𝛽 − 1) (�̂� ⋅ 𝐮) �̂�) (3)

where 𝑀𝑖𝑚𝑝𝑎𝑐𝑡𝑜𝑟 is the impactor mass, 𝑀𝐵 is the mass of Dimorphos, 𝐮 is
the impactor velocity, and �̂� is the outward surface normal at the impact
site (Rivkin et al., 2021; Feldhacker et al., 2017). For this analysis
we will assume �̂� is parallel to the velocity of Dimorphos, and that 𝐮
s misaligned with the velocity vector by 10 degrees out of the orbit
lane and 10 degrees in the radial direction, consistent with Richardson
t al. (2022). Note the impact is retrograde, decreasing the mutual orbit
eriod while increasing its eccentricity. From Richardson et al. (2022),
e use an impactor mass of 536 kg and velocity of 6.143 km/s relative

o the secondary.
For this analysis, we will assume a perturbation equivalent to a 𝛽

alue of 3, as this is large enough to excite unstable motion in some
hapes of Dimorphos, but small enough to allow stable motion in other
hapes, and also lies in the expected range of 𝛽: 1 < 𝛽 ≲ 6 (Raducan
nd Jutzi, 2022; Stickle et al., 2022). A perturbation of 𝛽 = 3 is roughly
quivalent to increasing the eccentricity to around 0.02, depending on
he secondary shape and mass. This allows us to study both stable and
nstable dynamical regimes without having to test multiple perturba-
ion magnitudes. Note this selection is not grounded in the actual DART
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Fig. 1. The maximum amplitude of the 1–2–3 Euler angles for an impact corresponding to 𝛽 = 3 (𝑒 ≈ 0.02), from the simulation set from Agrusa et al. (2021). The unstable
regions, indicated by nonzero amplitudes in the roll and pitch angles, are governed by intersections of various resonances among fundamental frequencies of the system. The
unstable region is outlined by the yellow dashed line; this is not a formal boundary and only serves to aid interpretation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 1
Summary of the equilibrium Didymos system prior to the DART impact, from Pravec et al. (2022), Scheirich and Pravec (2022), Naidu et al. (2020), and Scheirich and Pravec
(2009). Our density estimate differs from that reported in Scheirich and Pravec (2022) as we calculate it using a dynamical approach, but our solution falls within the 1𝜎 derived
error bars.

Parameter Symbol Value Notes

Orbit period 𝑃𝑜𝑟𝑏 11.92 h Measured (Pravec et al., 2022; Scheirich and Pravec, 2022)
Didymos rotation period 𝑃𝐴 2.26 h Measured (Pravec et al., 2022)
Didymos mean radius 𝑅𝐴 390 m Derived (Naidu et al., 2020)
Dimorphos mean radius 𝑅𝐵 82 m Derived (Naidu et al., 2020; Scheirich and Pravec, 2009)
System bulk density 𝜌 2.2 g/cm3 Derived here, similar to Scheirich and Pravec (2022)
Semimajor axis 𝑎 1200 m Measured (Naidu et al., 2020)
Eccentricity 𝑒 0 Assumed (Scheirich and Pravec, 2022; Richardson et al., 2022)
Inclination 𝑖 0◦ Assumed (Scheirich and Pravec, 2022; Richardson et al., 2022)
Table 2
Summary of the two triaxial ellipsoids used throughout this work as the secondary
shape.

Shape 𝑎 [m] 𝑏 [m] 𝑐 [m] 𝑆

𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1 95.6 79.7 72.4 0.18
𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3 112 80.0 61.5 0.32

impact, as we are interested in how different secondary shapes affect
dissipation rates within a system rather than making any quantitative
predictions, as an accurate prediction is impossible without knowledge
of the system’s interior structure. Following the DART impact and Hera
survey, this analysis can be revisited with better constraints on the
shape and mass of Dimorphos. We reproduce the results of Agrusa et al.
(2021) for 𝛽 = 3 in Fig. 1 to show the unstable region of motion.
While the size of Dimorphos is fixed by the bulk diameter, the shape
of the triaxial ellipsoid is defined by the axis ratios 𝑎∕𝑏 and 𝑏∕𝑐, where
𝑎, 𝑏, and 𝑐 are the longest, intermediate, and shortest semiaxes of the
ellipsoid, respectively. Fig. 1 shows the amplitude of the 1–2–3 Euler
angles, corresponding to roll, pitch, and yaw, for each secondary shape.
If a system is in a true equilibrium, these angles would remain zero.
An unstable region is apparent in Fig. 1 where some secondary shapes
result in tumbling. The unstable region in which the secondary begins
to tumble is outlined by a yellow dashed line. This is not a formal
boundary for this region and is only intended to aid interpretation.
The unstable region is dependent on the system’s eccentricity, so this
boundary cannot be applied outside of our impact scenario.

Due to the spin–orbit coupling in binary asteroids, these systems are
non-Keplerian, and thus osculating Keplerian elements can be some-
what misleading. In an equilibrium configuration, the secondary may
appear to be in a circular orbit to an external observer, but the Kep-
lerian orbit is elliptical. In this configuration, the secondary is trapped
at periapsis while the orbit itself precesses. Thus, there is a non-zero
eccentricity at equilibrium and the semimajor axis is not the same as
the separation distance (Scheeres, 2009). However, these elements are
3

still useful as they can give us an idea of the system’s secular evolution
over time, and we use the Keplerian osculating elements throughout
this work.

3. Dynamical model

The mutual dynamics of binary asteroids are characterized by the
F2BP, in which the orbit and attitude of the bodies are coupled. This
leads to complex dynamics, and various models have been developed
to simulate these systems with varying trade-offs between fidelity and
computational cost. Since we are concerned with time spans of many
years, it is necessary to select a more basic model at the cost of reduced
fidelity. In this context, we are more concerned with the system’s
qualitative behavior over long time periods rather than short-term
accuracy, so this is a fine compromise. As such, we model Didymos
as a spherical primary and Dimorphos as an ellipsoidal secondary,
which allows for full 3D dynamics with an elongated secondary without
becoming too computationally expensive. We will validate this model
against a high-fidelity model in Section 5. Fig. 2 shows a diagram of
the system, where body 𝐴 is Didymos and body 𝐵 is Dimorphos. In
later discussions, quantities with subscripts 𝐴 or 𝐵 specify those for
the designated bodies.

The equations of motion are straightforward and we omit any
derivation, instead referring the reader to Scheeres (2006). These equa-
tions are defined in the body-fixed frame of the secondary. We have six
degrees of freedom, being the relative separation and the rotation of
Dimorphos. The equations of motions are

�̈� + 2𝜔𝐵 × �̇� + �̇�𝐵 × 𝐫 + 𝜔𝐵 × (𝜔𝐵 × 𝐫) = (𝑀𝐴 +𝑀𝐵)
𝜕𝑈
𝜕𝐫

(4)

𝐈𝐵 ⋅ �̇�𝐵 + 𝜔𝐵 × 𝐈𝐵 ⋅ 𝜔𝐵 = −𝑀𝐴𝑀𝐵𝐫 ×
𝜕𝑈
𝜕𝐫

(5)

where 𝐈𝐵 is the inertia tensor of the secondary, which is a simple diag-
onal matrix in the secondary’s body-fixed frame. 𝑈 is the gravitational
potential around the ellipsoidal Dimorphos, and to ease computation
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Fig. 2. Diagram showing the dynamic model.

time we use a second degree expansion in the form of MacCullagh’s
formula (Murray and Dermott, 1999):

𝑈 = −
𝑀𝐴𝑀𝐵

𝑟
−

𝑀𝐴(𝐴 + 𝐵 + 𝐶 − 3𝛷)
2𝑟3

(6)

where 𝐴, 𝐵, and 𝐶 are respectively the minimum, intermediate, and
maximum principal inertia values of Dimorphos, and 𝛷 is a quantity
defined by

𝛷 =
𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2

𝑟2
(7)

with (𝑥, 𝑦, 𝑧) being the Cartesian coordinates of the primary in the
secondary’s body-fixed frame so that 𝐫 = 𝑥𝑖 + 𝑦𝑗 + 𝑧�̂�.

We next need to introduce the methods of dissipation through non-
rigid processes, both through tidal torque and NPA rotation, which
rise from a combination of deformation, rotation, and translation of
the bodies (Hirabayashi, 2022). We ignore any surface motion on both
the primary and secondary, which includes rotation-induced granular
motion on the secondary’s surface and any associated body reshaping,
which changes the gravitational potential energy (Agrusa et al., 2022a;
Agrusa et al., 2022b), tidal saltation and YORP-induced landslides on
the primary (Harris et al., 2009), and boulder movement on either
body (Brack and McMahon, 2019), which would also dissipate energy.
We will assume any reshaping and surface motion to be small and
intermittent, and the energy dissipated by these events to be negligible
over time. So our estimates on damping times for Didymos can be
considered conservative for a given set of material properties since
additional mechanisms will only increase the dissipation rate.

3.1. Tidal torque

To describe energy dissipation from the system, we introduce equa-
tions for tidal torque to add to our dynamic model. In selecting a basic
model for tidal torque, we have two choices: the constant 𝑄 model, in
which the rate of dissipation is driven by the ratio of tidal quality factor
𝑄 and the simple Love number 𝑘2 (Murray and Dermott, 1999), or the
constant time lag model, in which the angle between the tidal bulge
and the line connecting the two bodies is a constant 𝛥𝑡 (Mignard, 1979;
Hut, 1981). Based on the physics of our problem setup, the secondary
will librate about the synchronous configuration, and thus a constant
lag angle would be inappropriate, as the lag angle should oscillate as a
result of the libration. For this reason we select the constant 𝑄 model,
which is the same model adopted by Jacobson and Scheeres (2011a),
in which the tidal torque is defined as:

𝛤 = −sign(𝜔 − 𝜔𝑜𝑟𝑏)
3
2

(

3
4𝜋𝜌

)2𝐺𝑀2
𝐴𝑀

2
𝐵

𝑟6𝑅
𝑘
𝑄

(8)

where the body’s angular velocity is 𝜔, the orbit’s angular rate is 𝜔𝑜𝑟𝑏,
𝑅 is the reference radius for the body, 𝜌 is its density, and 𝑄∕𝑘 is the
tidal dissipation ratio. The tidal quality factor 𝑄 is related to the tidal
bulge lag angle (𝑄 ∼ 1∕ sin 𝜖), while the love number 𝑘2 describes the
level of body deformation due to the tidal potential. Henceforth we
drop the subscript 2 on the Love number for simplicity. A large value
4

of 𝑄∕𝑘 corresponds to a more stiff body that dissipates more slowly.
In reality, the tidal dissipation is far more complicated than simply
selecting constant values for the unknown 𝑄∕𝑘 values. As pointed out
by Efroimsky (2015), tidal dissipation in binary asteroids, including
rubble piles, may be governed primarily by the body’s viscosity, rather
than rigidity. Others, including Goldreich and Sari (2009) and Nimmo
and Matsuyama (2019), argue that friction is a critical parameter. Since
there is no current estimate for the viscosity of rubble pile asteroids to
the authors’ knowledge, we adopt the friction approach. Furthermore,
while many studies assume the quality number 𝑄 to be constant, this
parameter depends on the tidal frequency. Further complicating this
relationship is the fact that the tidal quality number is not a linear
function of the tidal frequency, and can either increase or decrease with
the frequency (Ferraz-Mello, 2013). We also are left with the problem
of the tidal lag angle oscillation. To address this we adopt the same
solution as Jacobson and Scheeres (2011a); we will linearize the tidal
torque around the point where (𝜔−𝜔𝑜𝑟𝑏) is near zero so the torque does
not immediately switch signs as the secondary librates (see Appendix C
therein for details on this linearization). This linearization is necessary,
as the tidal bulge is a physical phenomenon and requires a finite time
to cross between leading or trailing the tide-raising body.

Note that Taylor and Margot (2010) point out the simple tidal
model assumes the two bodies are widely separated, whereas the
separation between Didymos and Dimorphos is only slightly larger than
3 primary radii. In their work, Taylor and Margot (2010) calculate that
higher order terms in the tidal potential speed up the process of tidal
evolution. However, they also find that uncertainties in the system,
particularly surrounding 𝑄∕𝑘, dominate over the higher order tidal
expansion. Thus, we continue with the simple tidal model given the
large uncertainty associated with the bulk system density and physical
properties, while keeping in mind higher order terms in the tidal model
will only increase the rate of damping in the system. Thus, the error
associated with this tidal model is considered to be secondary to the
considerable uncertainty on the 𝑄∕𝑘 coefficient for our purposes.

Unfortunately, given the lack of knowledge on the physical param-
eters of rubble piles, particularly their viscosity, we cannot calculate
an accurate value for 𝑄∕𝑘. For lack of a better option, we surrender
ourselves to the typical simplifications surrounding the factor 𝑄∕𝑘, and
we turn to the work by Nimmo and Matsuyama (2019), who derive an
estimate for a constant 𝑄∕𝑘 for rubble pile binary asteroids, which can
be approximated by
𝑄
𝑘

≈ 300𝑅 (9)

for 𝑅 in meters. This leads to a value for the primary 𝑄𝐴∕𝑘𝐴 ≈ 1 × 105

and for the secondary 𝑄𝐵∕𝑘𝐵 ≈ 2.5 × 104. Note this expression for 𝑄 is
frequency dependent and derived for a non-synchronous binary system.
However, we again emphasize there is large uncertainty associated with
these values so this definition serves as a first-order approximation,
as the error from uncertainties dominates over the error from the
assumptions. Furthermore, these values are consistent with existing
estimates for small bodies in the literature (Brasser, 2020; Jacobson
and Scheeres, 2011b; Scheirich et al., 2015, 2021). However, there is
not a consensus on this linear scaling. For example, Goldreich and Sari
(2009) propose an inverse scaling of 𝑄∕𝑘 with 𝑅, and even in their
own work (Nimmo and Matsuyama, 2019) point out a scaling with 𝑅3∕2

may be more accurate. Another consideration is if Dimorphos turns out
to be monolithic instead of a rubble pile, its 𝑄∕𝑘 value would likely
be orders of magnitude higher (Goldreich and Sari, 2009). Hence, the
large uncertainty in 𝑄∕𝑘 dominates over other errors associated with
our model, and it is futile to develop a high fidelity tidal model while
limited by this unknown parameter. Given the large uncertainty and
lack of consensus around 𝑄∕𝑘, we adopt the linear scaling only as
nominal parameters, and subsequently investigate how varying 𝑄∕𝑘 for
both the primary and secondary affects the system behavior later in
Section 8.



Icarus 391 (2023) 115323A.J. Meyer et al.

o

𝐫

w

𝐫

H
c

𝐫

i
s
t
e
(
p

𝐫

r
r
r
u

Returning to the tidal torque equation, this model is still only de-
fined in 2-dimensions and we wish to extend this to a full 3-dimensional
analysis, as out-of-plane rotation of the secondary is a possibility. This
can be done with only a few corrections to the classic model. To start,
we need to define a vector for the torque direction. The torque will act
to push the spin rates of the asteroids into the synchronous equilibrium,
but physically cannot act in the direction of the position vector of the
secondary relative to the primary. We define the relative spin rate of a
body:

�̇� = 𝜔 − 𝜔𝑜𝑟𝑏. (10)

We can then use this spin vector as the vector along which the torque
acts, with a small correction so the torque in the radial direction is
zero:

𝛤 = −
�̇� − (�̇� ⋅ �̂�)�̂�
|�̇� − (�̇� ⋅ �̂�)�̂�|

(11)

This formulation also takes care of the sign of the torque, as the
torque will generally act in the direction opposite the relative spin
rate, so that a secondary rotating faster than the orbit rate is slowed,
while a secondary rotating slower will be sped up. Furthermore, any
out-of-plane rotation is countered by the torque, with the exception
of any spin about the relative position vector, as tidal torque can
only act perpendicular to this direction. Thus, we do not need any
further consideration on the sign of the torque and can remove the
−sign(𝜔 − 𝜔𝑜𝑟𝑏) expression from Eq. (8) and substitute Eq. (11) in its
place.

While we formulated the 3D torque expression with the secondary
in mind, it is also equally applicable to the primary, as tidal dissipation
will ultimately drive the system to the doubly synchronous state. So we
have developed expressions for the torque on both bodies. However, to
accurately express the equations of motion we also need to consider
the torque on the orbit. By the conservation of angular momentum, the
torque on the orbit is simply

Γ𝑜𝑟𝑏 = −(Γ𝐴 + Γ𝐵). (12)

However, to include this in the orbital equation of motion we will need
to calculate this torque’s effect on �̈�. Turning to the orbital angular
momentum we know

�̇� = 𝑑
𝑑𝑡

(𝑚𝐫 × �̇�) = Γ𝑜𝑟𝑏 (13)

where 𝑚 = 𝑀𝐴𝑀𝐵
𝑀𝐴+𝑀𝐵

. This gives

𝑚𝐫 × �̈� = Γ𝑜𝑟𝑏. (14)

We would like to solve this equation for �̈� to update the orbital equation
f motion with the tidal torque. We note that

× (𝐫 × �̈�) = (𝐫 ⋅ �̈�)𝐫 − (𝐫 ⋅ 𝐫)�̈� = 𝐫 ×
Γ𝑜𝑟𝑏
𝑚

(15)

hich can be arranged to find:

̈ =
Γ𝑜𝑟𝑏 × 𝐫
𝑚𝑟2

+ 𝐫 ⋅ �̈�
𝑟2

𝐫. (16)

owever, this is not a unique solution, as for any real number 𝐾 we
an find

̈ =
Γ𝑜𝑟𝑏 × 𝐫
𝑚𝑟2

+𝐾 𝐫 ⋅ �̈�
𝑟2

𝐫 (17)

s also a valid solution as a result of the dot product. Thus, we must
olve the problem of a non-unique solution. We note that whenever
he torque 𝛤𝑜𝑟𝑏 is equal to zero, there should be no contribution to the
quation of motion. So we choose 𝐾 = 0 to enforce this constraint
alternatively, we force the acceleration to be perpendicular to the
osition vector, so that 𝐫 ⋅ �̈� = 0), and we are left with

̈ =
Γ𝑜𝑟𝑏 × 𝐫

= 𝛾 . (18)
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𝑚𝑟2 𝑜𝑟𝑏
where we introduce the term 𝛾𝑜𝑟𝑏 as the acceleration due to the torque
on the orbit. This makes sense given the physical context, where the
tides should not have any effect in the radial direction. Note that this
formula must be calculated in an inertial frame as it is derived from
the orbit angular momentum. Once computed in an inertial frame, it
can be transformed into the secondary body-fixed frame for use in the
equations of motion.

3.2. NPA rotation

Any NPA rotation of the secondary will act to dissipate energy while
keeping its angular momentum constant, until its maximum principal
inertia axis is aligned with its angular momentum. There is a wide
variety of work that has considered this problem (Burns et al., 1973;
Molina et al., 2003; Pravec et al., 2005; Ershkov and Leshchenko,
2019), but for the most applicable to this work we turn to Breiter
et al. (2012), who calculate the rate of energy dissipation in a triaxial
ellipsoid rotating in either long-axis mode or short-axis mode. The full
expression for energy dissipation in a triaxial ellipsoid undergoing NPA
rotation is quite complicated, and we report a condensed version here:

�̇�𝑁𝑃𝐴 =
𝑎4𝜌𝑀𝐵�̃�5

𝐵
𝜇𝑄

𝛹 (19)

where 𝑎 is the secondary’s longest semiaxis, �̃�𝐵 is its nominal rotation
ate, and 𝛹 is a complicated function of the secondary’s shape, Poisson’s
atio, and an elliptic modulus. We omit the details here and refer the
eader to Breiter et al. (2012), for the full expression. This expression
ses the Lamé constant 𝜇 instead of the Love number 𝑘, but we can

relate our 𝑄∕𝑘 to 𝜇𝑄 through (Murray and Dermott, 1999; Nimmo and
Matsuyama, 2019):

𝜇𝑄 ∼ 𝑄
𝑘
𝜌2𝑅2. (20)

At the risk of sounding repetitive, we again highlight the shortfall of
this relationship as pointed out by Efroimsky (2015), as 𝑄 is frequency
dependent. Thus, the 𝑄 selected for the tidal dissipation model is not
necessarily the same 𝑄 for NPA rotation, again introducing consider-
able uncertainty. However, we assume the driving frequencies for tidal
and NPA dissipation are the same, and again for lack of a better option
we adopt the same 𝑄 for both methods of dissipation.

Since the equations of motion are defined in the secondary’s body-
fixed frame, the energy dissipation due to NPA rotation will apply an
‘effective torque’ to rotate the secondary’s angular momentum to align
it with its maximum principal inertia axis while keeping the magnitude
constant.

To obtain the effective torque, we start with the energy dissipation
equation

�̇� = 𝜔𝐵 ⋅ 𝐼𝐵�̇�𝐵 . (21)

Next, we expand the equation �̇�𝐵 = Γ𝑁𝑃𝐴 for secondary angular
momentum 𝐻𝐵 :

Γ𝑁𝑃𝐴 = 𝐼𝐵�̇�𝐵 + 𝜔𝐵 × 𝐼𝐵𝜔. (22)

By taking the dot product of this equation with 𝜔𝐵 , we can find an
expression for the effective torque as a function of �̇�:

𝜔𝐵 ⋅ Γ𝑁𝑃𝐴 = �̇�𝑁𝑃𝐴. (23)

Of course, due to the dot product, this is not a complete expression as
we still need to define the direction of the effective torque Γ𝑁𝑃𝐴. Since
NPA dissipation will not change the angular momentum magnitude,
only the angular momentum’s direction relative to the body-fixed axes
of the secondary, the effective torque must be perpendicular to the
angular momentum. As a conceptual illustration, imagine a satellite
undergoing torque-free tumbling. In this scenario, the satellite’s angular
momentum vector is constant, while dissipation reorients the satellite

so that its principal axis is aligned with the angular momentum (and
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Fig. 3. The rate of energy dissipation through tidal torque compared to NPA rotation
as a function of separation. Tidal torque has orders of magnitude more of an effect
than NPA rotation for a close binary system like Didymos.

its kinetic energy is minimized). In the same sense, within the body-
fixed frame of the secondary, its angular momentum will appear to
rotate until its aligned with the principal axis, while maintaining a
constant magnitude. This is accomplished by applying an effective
torque perpendicular to the angular momentum, such that this torque
only rotates the angular momentum vector, but does not scale it. We
define an intermediate vector

𝜅 = 𝐇𝐵 × �̂� (24)

where �̂� is the secondary’s maximum principal inertia axis. We then use
this intermediate vector to define the torque unit vector

𝛤 =
𝐇𝐵 × 𝜅
|𝐇𝐵 × 𝜅|

. (25)

The effective torque will act to rotate the angular momentum vector
𝐇𝐵 until it is aligned with the secondary’s �̂� direction. The effective
torque is then calculated as

Γ𝑁𝑃𝐴 = �̇�
𝜔𝐵 ⋅ 𝛤

𝛤 . (26)

Note that in reality, the secondary angular momentum vector will not
rotate and instead the body-fixed coordinate axes of the secondary will
rotate to align �̂� with the angular momentum vector. However, if we
define our equations of motion in the secondary body-fixed frame as
we have done, this effective torque will be appropriate to use.

3.3. Comparison

In order to compare our two methods of energy dissipation, we plot
the rate of energy dissipation in the secondary as a function of the
separation distance for a body rotating with a spin axis offset from its
major principal axis by approximately 32◦. This is near the switching
point between long-axis and short-axis mode rotation, and thus NPA
dissipation is near a maximum here. Fig. 3 shows the energy dissipation
rates for the two mechanisms, highlighting that tidal dissipation is
generally more than an order of magnitude stronger than NPA rotation
for a close binary like Didymos. Despite this contrast, we still include
the effects of NPA rotation as it does not significantly slow down the
integration wall time.

While close systems like Didymos are dominated by tidal torque,
wider systems see near-equal contributions from both tidal torque and
NPA rotation, and NPA dissipation becomes dominant at very wide
separations. The secondary shape and spin-axis obliquity will affect the
rate of NPA rotation energy decay, but for Didymos the tidal torque will
always be stronger owing to the close proximity of its secondary.

Looking at a system with a semimajor axis of 1200 m, we next
examine how the secondary’s spin offset angle affects dissipation. Fig. 4
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Fig. 4. The rate of energy dissipation through tidal torque compared to NPA rotation
as a function of secondary spin offset angle. The NPA dissipation is greatest near
the discontinuity, where the secondary is switching between long-axis and short-axis
rotation modes.

shows the dissipation rate as a function of the angle between the
secondary’s spin axis and its principal moment of inertia axis (we call
this angle 𝛿, and a system with 𝛿 = 0◦ is in principal axis spin). We see
tidal dissipation is largely independent of the spin axis offset, but NPA
rotation depends strongly on this angle. There is a discontinuity where
the secondary switches from short-axis to long-axis mode rotation. Dis-
sipation then quickly drops to zero as spin approaches either perfectly
major (𝛿 = 0◦) or minor (𝛿 = 90◦) axis rotation.

3.4. Equations of motion

We can now add our dissipation mechanisms to our equations of
motion, which will model the energy dissipation due to tides and NPA
rotation while keeping the system’s angular momentum constant:

�̈� + 2𝜔𝐵 × �̇� + �̇�𝐵 × 𝐫 + 𝜔𝐵 × (𝜔𝐵 × 𝐫) = (𝑀𝐴 +𝑀𝐵)
𝜕𝑈
𝜕𝐫

+ 𝛾𝑜𝑟𝑏 (27)

𝐈𝐵 ⋅ �̇�𝐵 + 𝜔𝐵 × 𝐈𝐵 ⋅ 𝜔𝐵 = −𝑀𝐴𝑀𝐵𝐫 ×
𝜕𝑈
𝜕𝐫

+ Γ𝐵 + Γ𝑁𝑃𝐴. (28)

The uncoupled rotational dynamics equation of the spherical primary
is simply

𝐈𝐴�̇�𝐴 = Γ𝐴, (29)

which is necessary to include to enforce the conservation of angular
momentum.

For the sphere–ellipsoid model, we use a variable-step, variable-
order Adams–Bashforth–Moulton predictor–corrector integrator to
propagate the equations of motion. This integrator conserves the system
energy (in the non-dissipative case) to within 5×10−5% over 200 years.
As an illustration, Fig. 5 shows the total system energy calculated by
propagating the equations of motion using this integrator, for both
the dissipative and non-dissipative cases. This demonstrates that the
integrator conserves energy in the non-dissipative case and is accurate
enough to capture the secular effects caused by energy dissipation.

4. Energy dissipation

In investigating the energy dissipation of a librating binary asteroid,
we must consider two dynamical regimes: stable libration or NPA
rotation. A system in the stable regime will only see fluctuations
in secondary rotation about its principal axis, whereas an unstable
system will experience rotation about all three axes. For a uniform bulk
density, the dynamical regime of the system depends on the shape of
the secondary, as illustrated in Fig. 1. We will select a system from
both the stable and unstable region to carry out long-term simulations
to investigate how a system dissipates its libration and returns to a
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Fig. 5. The total system energy, normalized by the initial energy, over 200 years
comparing the dissipative to the non-dissipative case. This demonstrates the energy
dissipation is a real effect and not caused by numerical error over this long time span.

Fig. 6. The secondary rotational energy (top), orbit energy (middle), and free energy
(bottom) of the stable system with secondary 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1. The energies are
normalized by the respective pre-impact equilibrium values. The oscillations within the
energy are damped at the same rate across the secondary, orbit, and free energies. Here
𝑄𝐴∕𝑘𝐴 ≈ 1𝑒5 and 𝑄𝐵∕𝑘𝐵 ≈ 2.5𝑒4.

synchronous equilibrium. For the stable system, we select a secondary
with axis ratios 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1, and for the unstable system
we choose 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3. Both of these shapes are within the
predicted values for Dimorphos (Pravec et al., 2022). Note that energy
dissipation in the primary is generally uniform across all shapes, so we
thus exclude it from our analysis for simplicity.

4.1. Stable system

For the stable system, we simulate the dynamics for 200 years
(∼150,000 orbit periods), during which the system returns to an equi-
librium and begins to secularly evolve. We first examine the system
energy, shown in Fig. 6. We plot the secondary rotational energy, the
orbit energy, and the free energy. We define the free energy simply
as the sum of the secondary rotational and orbit energies, or alterna-
tively as the total energy sans the primary rotational energy. Since the
primary rotational energy will uniformly decrease as a result of tides,
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Fig. 7. The Keplerian semimajor axis (top), eccentricity (middle), and libration angle
(bottom) of the stable system with secondary 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1. The oscillations in
semimajor axis and libration are damped at the same rate the eccentricity approaches
its non-zero equilibrium value due to spin–orbit coupling. Here 𝑄𝐴∕𝑘𝐴 ≈ 1𝑒5 and
𝑄𝐵∕𝑘𝐵 ≈ 2.5𝑒4.

the free energy is a better metric to examine the system’s evolution. We
see oscillations in the energy after the perturbation, which damp out as
the system settles into a new equilibrium. Interestingly, the free energy
decreases for a time before increasing. This indicates that dissipation
acts to equilibrate the system faster than secularly evolve it. This is
apparent in the exponential decrease in the secondary and orbit energy
oscillations, as these values converge to a mean faster than the mean
itself evolves.

This behavior is also apparent in Fig. 7, where we plot the Keplerian
semimajor axis and eccentricity, along with the secondary libration an-
gle. Again, we see the oscillations in the semimajor axis exponentially
damping before any secular evolution is apparent. These oscillations
damp at the same rate the eccentricity approaches its equilibrium value
(recall that due to spin–orbit coupling, the equilibrium eccentricity is
small but non-zero). This is also the same rate the libration damps to
zero. In the libration angle we again see an initial exponential decrease.

As a result of spin–orbit coupling and the unique dynamics of binary
asteroids, we see a new dynamical regime not previously studied in
tidal analyses. It appears dissipation first acts to drive the system back
toward an equilibrium by damping the eccentricity and oscillations
in the system caused by libration, before the more classical secular
tidal behavior is seen. Thus, rather than eccentricity and semimajor
axis evolving concurrently as in classical tidal theory (e.g. Goldreich
and Sari (2009)), the eccentricity is damped to a minimum before the
semimajor axis evolves.

4.2. Unstable system

We next perform the same simulation for the unstable system. The
system energy is shown in Fig. 8, where again we plot the secondary
rotational energy, the orbit energy, and the free energy. Interestingly,
on a comparable time scale as the stable system, the unstable system
also returns to an equilibrium configuration. A notable difference is
the oscillations in energy appear to converge linearly, unlike the stable
system which experienced an exponential decay of oscillations. In the
unstable system we again see an initial decrease in the free energy
before it begins to increase as the orbit expands.
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Fig. 8. The secondary rotational energy (top), orbit energy (middle), and free energy
(bottom) of the unstable system with secondary 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3. The energies are
normalized by the respective pre-impact equilibrium values. The oscillations within the
energy are damped at the same rate across the secondary, orbit, and free energies. Here
𝑄𝐴∕𝑘𝐴 ≈ 1𝑒5 and 𝑄𝐵∕𝑘𝐵 ≈ 2.5𝑒4.

Fig. 9. The semimajor axis (top), eccentricity (middle), and libration angle (bottom)
of the unstable system with secondary 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3. The oscillations in
semimajor axis and libration are damped at the same rate the eccentricity approaches
its equilibrium value due to spin–orbit coupling. Here 𝑄𝐴∕𝑘𝐴 ≈ 1𝑒5 and 𝑄𝐵∕𝑘𝐵 ≈ 2.5𝑒4.

In Fig. 9, we plot the semimajor axis, eccentricity, and libration
angle of the unstable system. Again we see a linear, rather than expo-
nential, decay in these elements. Once more, the timescale of damping
is approximately uniform across all these elements, also consistent with
the energy envelope decay times, highlighting the strength of the spin–
orbit coupling. The binary asteroid cannot settle into an equilibrium
while the libration amplitude is nonzero, or equivalently the eccen-
tricity is not equal to its equilibrium value. This is consistent with the
findings of Meyer et al. (2021), who point out the relationship between
the secondary spin and the orbit oscillations.

An interesting takeaway from this result is both the stable and un-
stable systems reequilibrate on comparable timescales. While previous
8

Fig. 10. The semimajor axis (top) and eccentricity (bottom) for the stable system
(𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1), comparing the numeric results to an analytic model. While the
secular trend of semimajor axis is consistent between the models, the analytic model
does a poor job of describing the eccentricity evolution.

analyses have shown unstable rotation will slow dissipation (Wisdom
et al., 1984; Quillen et al., 2022; Naidu and Margot, 2015), that
applies to non-synchronous rotation, whereas our system never leaves
an on-average synchronous configuration. Quillen et al. (2020) predict
that tumbling within the synchronous state does not reduce energy
dissipation and in fact can enhance it, and our results are consistent
with that finding. However, a unique finding in our analysis is the
close relationship between the eccentricity, libration, and oscillation
within the semimajor axis. This is due to the spin–orbit coupling in
binary asteroids, as any deviation from an equilibrium spin state of the
secondary will also affect the orbit.

4.3. Analytic models

An important question is how this numeric model compares to more
classical analytic models of energy dissipation. Here, we focus only
on tidal dissipation since this is the dominant mechanism. Analytic
equations for the evolution of semimajor axis and eccentricity of a
binary system with 𝑒 ≪ 1 undergoing tidal dissipation are reported
in Goldreich and Sari (2009):

�̇�
𝑎
= 3

𝑘𝐴
𝑄𝐴

𝑀𝐵
𝑀𝐴

(

𝑅𝐴
𝑎

)5
𝑛 (30)

�̇�
𝑒
= 57

8
𝑘𝐴
𝑄𝐴

𝑀𝐵
𝑀𝐴

(

𝑅𝐴
𝑎

)5
𝑛 − 21

2
𝑘𝐵
𝑄𝐵

𝑀𝐴
𝑀𝐵

(

𝑅𝐵
𝑎

)5
𝑛 (31)

where 𝑛 is the mutual orbit mean angular velocity. Note in Eqs. (30) and
(31), 𝑎 refers to the binary mutual orbit semimajor axis rather than the
secondary’s longest semiaxis as used elsewhere in this work. In Eq. (31)
for the eccentricity we see two terms: the first is the contribution from
tides raised on the primary and the second is the contribution from tides
raised on the secondary. The semimajor axis and eccentricity evolution
is compared between the analytic model and our numeric results in
Fig. 10 for the stable system and Fig. 11 for the unstable system.

For both the stable and unstable systems, the analytic model does
a good job describing the secular rate of change of semimajor axis,
but fails to account for the initial oscillations in semimajor axis. The
analytic model also fails to describe the eccentricity damping rate and
predicts a much slower decrease in eccentricity than what we see in our
numeric model. These results make sense in the context of this problem;
in our numeric model, the primary matches the assumptions in the
analytic model: a rapidly rotating sphere. However, our secondary does
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Fig. 11. The semimajor axis (top) and eccentricity (bottom) for the unstable system
(𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3), comparing the numeric results to an analytic model. While the
secular trend of semimajor axis is consistent between the models, the analytic model
does a poor job of describing the eccentricity evolution.

not match the assumptions as it is neither spherical nor exactly tidally
locked. Thus, we would expect to match the semimajor axis drift as this
is driven by tides on the primary, but not the eccentricity damping rate,
which has contributions from tides on the secondary. Furthermore, as
the semimajor axis oscillations are driven by libration of the secondary,
the analytic model does not capture this behavior. Note that our results
have a non-negligible eccentricity, so we expect some error in the
analytic model.

The analytic model of Goldreich and Sari (2009) makes no consid-
eration of the secondary’s libration. For this we turn to Jacobson et al.
(2014) who develop an expression for the damping rate of libration
amplitude due to tides1:

�̇�𝐵 = −
𝑘𝐵𝜔𝑙𝛷2

𝐵
𝑄𝑆𝖢 sin 2𝛷𝐵

(

𝑅𝐴
�̃�

)3
(32)

where the libration frequency 𝜔𝑙 is defined as

𝜔𝑙 =
𝜋𝜔𝑑

√

3𝑆(1 + 𝑠)

2K(sin2 𝛷𝐵)

(

𝑅𝐴
�̃�

)3∕2
. (33)

Here, 𝜔𝑑 =
√

4𝜋𝜌𝐺∕3 is the spin disruption limit, K(𝑘2) is the complete
elliptic function of the first kind, 𝑠 = 𝖢𝑞2∕3(1 + 𝑞)(𝑅𝐴∕�̃�)2 is the
secondary perturbation term with mass fraction 𝑞 = 𝑚𝐵∕𝑚𝐴. Here,
�̃� is the binary mutual orbit semimajor axis in units of the primary
radius. 𝑆 = (𝖡 − 𝖠)∕𝖢 is a shape parameter where 𝖠 < 𝖡 < 𝖢 are
the dimensionless principal moments of inertia. For the derivation and
in-depth discussion of this model we refer the reader to Jacobson et al.
(2014).

While this formula is derived for a planar, circular orbit, it can still
accurately be applied to our stable system as this remains essentially
planar with a small eccentricity. We see in Fig. 12 that, for the stable
system, there is good agreement between our numeric results and this
analytic model. While the instantaneous dissipation rates can differ,
the overall trend is similar and both models converge to zero in the
same time frame. Applying this analytic model to the unstable system
introduces error given the non-planar libration, but Fig. 13 still shows
decent agreement. The biggest difference for the unstable system is the
rate of dissipation, where the numeric model converges to zero faster

1 The final result of this equation reported in Jacobson et al. (2014) is
missing the 1∕𝖢 term in the denominator.
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Fig. 12. The libration amplitude for the stable system (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1), comparing
the numeric results to an analytic model. We see good agreement between the models,
and both converge to zero on the same timescale.

Fig. 13. The libration amplitude for the unstable system (𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3),
comparing the numeric results to an analytic model. The numeric model, experiencing
non-planar libration, dissipates to zero faster than the analytic model predicts for planar
libration.

than the analytic model. This indicates out-of-plane rotation of the
secondary increases the rate of dissipation compared to purely planar
libration, consistent with the findings of Quillen et al. (2020).

While Jacobson et al. (2014) use the same equations as Goldreich
and Sari (2009) for the orbit evolution (semimajor axis and eccen-
tricity), their derivation of the libration damping rate sidesteps the
problem with the eccentricity damping equation. Thus, the formula
for libration damping gives a good approximation for the eccentric-
ity damping since these quantities are closely related in the coupled
problem. Of course, this formula is more accurate for the stable, planar
system. But a decent analytic approximation of the system’s evolution
can be made using only the semimajor axis and libration amplitude
equations.

We have so far only compared two secondary shapes. These two
shapes have a similar damping timescale, but additional tests are re-
quired to determine if this is a coincidence or a more general property.
Fig. 26 in Appendix A compares the libration damping of six additional
shapes of the secondary, and here we see across all 8 shapes tested the
damping timescale is on the same order of magnitude regardless of the
secondary’s rotational stability.

5. Validation

While we have developed an efficient model for energy dissipation
in two close rigid bodies, the sphere–ellipsoid model is simplistic and
we must validate it against a higher-fidelity model. As a high-fidelity
model, we use the General Use Binary Asteroid Simulator (gubas), which
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uses a fourth degree and order gravity field between two rigid bodies
defined by polyhedral models (Davis and Scheeres, 2020, 2021). A
fourth degree gravity expansion was previously found to accurately
describe binary asteroid dynamics (Agrusa et al., 2020). While we use
the polyhedral model for the Didymos primary, we continue using an
ellipsoid secondary to test both stable (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1) and
unstable (𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3) systems. We have modified the gubas
code to include the same tidal torque model as described in Section 3,
but we do not include NPA rotation dissipation for efficiency as it
is generally at least an order of magnitude smaller. We run these
simulations for 5 years as this is generally long enough to compare
trends, but longer simulations in gubas are prohibitively expensive to
run.

In comparing these models, we use the set of 1–2–3 Euler angles
(roll, pitch, yaw) to describe the secondary’s orientation relative to the
synchronous equilibrium. This allows for a more accurate comparison
than using only the physical libration angle.

5.1. Stable system

For the stable system, we first examine the energy, where Fig. 27
in Appendix B plots the secondary, orbit, and total energies. While,
unsurprisingly, there are differences in the magnitudes of these quan-
tities, their overall behavior is consistent. The rate of collapse of the
secondary and orbit energies are similar between the models, and
the secular trend of total energy is also consistent. There are larger
oscillations in the total energy for the gubas model, but this is due
to numerical noise, as the simplicity of the sphere–ellipsoid model
allows us to use much tighter tolerances without a major sacrifice to
computation cost.

We next examine the libration amplitude through 1–2–3 Euler
angles (roll, pitch, yaw). Fig. 28 in Appendix B plots the 1–2–3 Euler
angles for both the sphere–ellipsoid and gubas models, but 𝜃1 and 𝜃2
remain nearly zero due to the stable configuration. Again, there are
small differences in the libration magnitude, but the damping rate is
nearly identical between these models. One notable difference is it
appears 𝜃1 and 𝜃2, although nearly zero, only dissipate further in the
sphere–ellipsoid model. However, we recall that the sphere–ellipsoid
model uses a more stringent tolerance than gubas and we see less
numeric noise (see Fig. 27). Thus, we expect when the out-of-plane
angles are small enough as in this case, they will not further damp as
a result of this numeric noise. Even in the sphere–ellipsoid model, the
out-of-plane angles damp further but still do not reach exactly zero. The
in-plane angle 𝜃3, which has a significant amplitude, has a very strong
agreement between the two models.

5.2. Unstable system

Next, we perform the same comparison for the unstable system.
Fig. 29 in Appendix B plots the secondary, orbit, and total energy.
Essentially, we see the same behavior as we did in the stable system,
where there are clear, and expected, differences between the two
models but the overall behaviors are very similar.

For the unstable system, where non-principal axis rotation is preva-
lent, we plot the 1–2–3 Euler angles of the secondary in Fig. 30
in Appendix B. Again we see close agreement between the sphere–
ellipsoid and gubas models. Note the secondary rolls over occasionally
in the gubas model and 𝜃1 oscillates about 180◦ instead of 0◦, but this
is only a small deviation from the behavior seen in the sphere–ellipsoid
model.

While there are quantitative differences between the sphere-
ellipsoid and gubas models, they share qualitatively the same behavior.
This is expected, as the high-fidelity model simply includes additional
perturbations to the dynamics compared to the simple sphere–ellipsoid
model. Most importantly, we are mainly concerned with the overall
trends caused by dissipation, which are consistent across the models.
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Fig. 14. The secondary rotational energy for the stable system (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1)
in blue, along with the synchronous energy in green. The energy is normalized by the
pre-impact equilibrium energy. The instantaneous energy approaches the synchronous
value as energy dissipates. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6. Short-term implications

More applicable to the AIDA collaboration is how much the Didy-
mos system will evolve between the DART impact and the arrival of
Hera to survey the system; this timespan is around 5 years. Thus,
we next investigate how different secondary shapes cause different
behaviors over this shorter timespan. Given the large number of sys-
tems we must test to cover possible secondary sizes, we return to the
sphere–ellipsoid model for computational efficiency.

6.1. Secondary energy

As seen in Fig. 6, the secondary energy does not initially evolve
secularly but rather damps oscillations to approach a synchronous state.
We can calculate the synchronous energy the secondary would have if
it were in an equilibrium using the synchronous spin rate of the system
calculated by (Scheeres, 2009):

�̇�2 =
(𝑀𝐴 +𝑀𝐵)

𝑟3

[

1 + 3
2𝑟2

(

𝐼𝐵,𝑧 + 𝐼𝐵,𝑦 − 2𝐼𝐵,𝑥

)]

(34)

where the bodies are separated by a distance of 𝑟, and the bar indicates
the mass-normalized secondary inertia values. Using this equilibrium
spin rate, the secondary’s minimum energy state at any time is simply
calculated as:

𝐸𝑚𝑖𝑛 =
1
2
𝐼𝐵,𝑧�̇�

2. (35)

Fig. 14 shows the secondary’s rotational energy along with its instan-
taneous synchronous energy over the first 5 years for the stable system
(𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1).

We see the secondary energy approaching the synchronous state as
the system dissipates energy. To quantify this we define the secondary
excess energy, which is simply

𝐸exc = |𝐸B − 𝐸min|. (36)

By calculating changes in the excess energy, we can determine how
close the system has moved to the synchronous configuration. We
investigate the secondary’s energy change for all shapes by plotting the
relative change in excess energy over 5 years in Fig. 15. The relative
change is calculated as

𝛥𝐸 =
�̄�5 − �̄�1

�̄�1
. (37)

where �̄�5 is the mean excess energy over the fifth year of the simula-
tion, and likewise for �̄� . In other words, the relative change is the
1
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Fig. 15. The normalized change in secondary excess energy after 5 years, calculated
as the difference between the average secondary excess energy during the first and last
year of the simulation, normalized by the average excess energy during the first year
of the simulation. The yellow dashed line shows the approximate unstable region. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. The percent change in free energy after 5 years, calculated as the difference
between the average free energy during the first and last year of the simulation,
normalized by the average energy during the first year of the simulation. The
yellow dashed line shows the approximate unstable region. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

difference in the mean excess energy over the first and fifth (final)
year of the simulation, normalized by the average excess energy during
the first year. In Fig. 15, we see essentially random changes in the
secondary excess energy for shapes within the unstable region (refer
to Fig. 1 for an illustration of the unstable region, but generally this
is in the region of high values of 𝑎∕𝑏 and 𝑏∕𝑐). Due to the chaotic
dynamics of these shapes, the secondary could actually be moving away
from the synchronous state. Outside the unstable region, generally we
see shapes with a small value of 𝑎∕𝑏 have the largest relative change
in excess energy, while secondaries with 𝑎∕𝑏 ≈ 1.4 have the smallest
relative change. Interestingly, there is a large resonance in the system
when 𝑎∕𝑏 ≈ 1.4 (Agrusa et al., 2021), which leads to a more energetic
response in the secondary (higher initial libration amplitude; see Fig. 17
below), so the relative change in secondary energy is smaller.
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Fig. 17. The initial libration amplitude at the start of the simulation. The yellow
dashed line shows the approximate unstable region, which generally has the largest
libration amplitudes. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 18. The change in libration amplitude after 5 years, calculated as the difference
between the maximum libration during the first and last year of the simulation. The
yellow dashed line shows the approximate unstable region, in which the libration
amplitude can change randomly. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6.2. Free energy

We next turn to the free energy, which is the sum of the secondary
and orbit energies. By excluding the primary’s energy, this allows us to
better understand the system’s evolution. We keep the same definition
for the relative change in energy, but now applied to the free energy.
The relative change in free energy is plotted in Fig. 16, where we see in
general very small changes in the first 5 years. However, as discussed
above, in some systems the free energy is initially decreasing. In Fig. 16
we see this is the case for most systems, as only shapes with a small
value of 𝑎∕𝑏 immediately start increasing free energy. We point out
that as the orbit expands (semimajor axis increases), we would expect
the free energy to also increase as the orbit energy increases, yet this
is not the case during the first years after the perturbation. This once
again highlights the departure from classical tidal theory during the
initial period of libration damping as dissipation pushes the system
back toward an equilibrium. Again we see the effect of the resonance
at 𝑎∕𝑏 = 1.4, as shapes near this area (and outside the unstable region)
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Fig. 19. The initial eccentricity, calculated as the maximum eccentricity during the
first year of the simulation. The cyan dashed line shows the approximate unstable
region, which has no bearing on the initial eccentricity. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 20. The change in eccentricity after 5 years, calculated as the difference between
the maximum eccentricity during the first and last year of the simulation. The
results are plotted on a logarithmic scale for clarity. The cyan dashed line shows
the approximate unstable region, which sees the largest change in eccentricity. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

have the largest relative decrease in free energy over the first 5 years.
Within the unstable region generally the free energy is decreasing, but
this is not true for every shape, illustrating the chaotic nature of this
region.

6.3. Libration

Of particular interest is the libration amplitude of the system, as
this will be a physically observable quantity with Hera. Here, we are
defining libration as the angle between the secondary’s long axis and
the radial vector from the secondary to the primary. Thus, a system
in equilibrium will have zero libration as the secondary’s long axis is
exactly aligned with the primary. In Fig. 17, we plot the initial libration
amplitude after the impact. Generally, we see the libration amplitude
increases with the secondary’s elongation, but begins to drop off after
the resonance near 𝑎∕𝑏 = 1.4, which is where the libration amplitude
is at a maximum. Outside the unstable region, libration amplitude
is essentially independent of 𝑏∕𝑐, but within the unstable region we
12
Fig. 21. 𝑄𝐴∕𝑘𝐴 as a function of the BYORP coefficient 𝐵 for our nominal Didymos
system, plotted in dark blue. The uncertainty envelope around this curve is plotted
in cyan considering the error bars in the bodies’ estimates of sizes and densities. Our
estimate is shown as a red dot on the plot. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

generally see larger libration amplitudes as a result of the out-of-plane
secondary rotation.

There is a correlation between the initial libration amplitude and
the initial free energy trend, which can be seen when comparing
Figs. 16 and 17. Generally, a larger libration amplitude corresponds
to a faster decrease in free energy, while systems with a small libration
amplitude immediately start increasing free energy. This indicates that
an initial decrease in free energy could be caused by a large pertur-
bation away from equilibrium, as dissipation forces the system back
toward an equilibrium configuration.

Fig. 18 plots the change in libration amplitude after 5 years. This is
calculated by finding the difference between the maximum libration
angles between the first and last year of the simulation. Within the
unstable region, the system can increase or decrease the libration
amplitude over this short time span depending on the shape. Thus, if
the DART impact causes Dimorphos to become attitude unstable, Hera
will not observe any systematic trend in libration amplitude and instead
see chaotic variations due to the non-principal axis rotation. However,
outside the unstable region there is a systematic decrease in libration
amplitude, although only a few degrees for our selected values of 𝑄∕𝑘.
However, the largest decrease in libration amplitude outside the chaotic
region is around 𝑎∕𝑏 = 1.1, which is another resonance (Agrusa et al.,
2021). These systems could see a decrease in libration amplitude of
around 3–4◦, which is noteworthy considering these same systems have
a small initial libration amplitude of around 8–10◦. Thus, it is possible
Dimorphos could dissipate a significant fraction of the DART-induced
libration amplitude by the time of Hera’s arrival, of course depending
on the true tidal parameters of the system. A discussion of the effect of
𝑄∕𝑘 on libration damping is included in Section 8.

6.4. Eccentricity

Next we examine the Keplerian eccentricity of the system. Fig. 19
plots the maximum eccentricity over the first year after the pertur-
bation, where we see shapes with large values of 𝑎∕𝑏 and 𝑏∕𝑐 have
the largest initial eccentricity. There appears to be no effect from the
unstable region on the initial eccentricity. However, this is not the case
for the change in eccentricity over 5 years, shown in Fig. 20. Here we
see the largest decreases in eccentricity are found for shapes in the
unstable region, consistent with the findings of Quillen et al. (2020).
Outside the unstable region, as 𝑎∕𝑏 increases so does the change in



Icarus 391 (2023) 115323A.J. Meyer et al.
Fig. 22. For the stable system 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1, we vary the value of 𝑄𝐴∕𝑘𝐴 while keeping 𝑄𝐵∕𝑘𝐵 = 105 constant. For 200 years, we plot the libration angle (top left),
normalized free energy (top right), semimajor axis (bottom left), and eccentricity (bottom right). While the rate of change of the semimajor axis and free energy strongly depend
on 𝑄𝐴∕𝑘𝐴, the libration amplitude and eccentricity are largely independent of primary tidal parameters.
eccentricity. Thus, it appears the shapes with the largest initial libration
amplitudes also see the largest decrease in eccentricity during the first
years after the perturbation. These are also the same shapes with the
largest initial decrease in free energy, but the smallest relative change
in secondary excess energy. This highlights the importance of spin–orbit
coupling, as systems pushed furthest away from equilibrium see the
fastest changes to their orbit in order to bring the secondary’s spin back
to an equilibrium.

7. BYORP

While this analysis has focused on the internal system dynamics of
a binary asteroid, an important external influence on the dynamics is
BYORP (Ćuk and Burns, 2005). For a singly synchronous binary system,
BYORP can act to either expand or contract the orbit, with NPA rotation
decreasing the magnitude of the BYORP torque (Quillen et al., 2022).
Thus, we expect the BYORP effect to have a smaller impact on the
dynamics of the unstable systems where NPA rotation is frequent.

Jacobson and Scheeres (2011b) predict an equilibrium in which
tidal dissipation balances BYORP drift, and the orbit does not evolve
over time. Didymos has a very small mean anomaly drift rate of 𝛥𝑀 =
0.15 ± 0.14◦𝑦𝑟−2 with 3𝜎 uncertainty (Scheirich and Pravec, 2022),
meaning that if it is not in a tide-BYORP equilibrium, it is likely near
one. For our purposes we will assume an equilibrium between tides
and BYORP in order to calculate a BYORP coefficient as a check on
our analysis. Given the small observed mean anomaly drift, we can
make this assumption without introducing too much error. In such an
equilibrium, we can calculate:

𝐵𝑄𝐴 =
2𝜋𝜔2

𝑑𝜌𝑅
2
𝐴𝑞

4∕3

(38)
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𝑘𝐴 𝐻⊙𝑎7
where 𝜔𝑑 =
√

4𝜋𝜌∕3 is the spin disruption limit, 𝑞 = 𝑀𝐵∕𝑀𝐴 is the
mass ratio (under a uniform system bulk density assumption, this is
equivalent to a volume ratio), 𝑅𝐴 and 𝑎 are the primary’s mean radius
and the binary mutual semimajor axis, respectively, and 𝐻⊙ is a solar
parameter defined as

𝐻⊙ =
𝐹𝑠

𝑎2⊙
√

1 − 𝑒2⊙

(39)

where 𝐹𝑠 ≈ 1 × 1017 is a constant and 𝑎⊙, 𝑒⊙ are the heliocentric
semimajor axis and eccentricity of Didymos, respectively (McMahon
and Scheeres, 2010).

Likely, magnitudes of 𝐵 exist in the interval from 0 to 10−2, but
most commonly values of 𝐵 are reported between 10−3 and 10−2

(Scheirich et al., 2015; Jacobson and Scheeres, 2011b; Steinberg et al.,
2011). With our parameters for Didymos and our value for 𝑄𝐴∕𝑘𝐴, we
calculate 𝐵 ≈ 4.5 × 10−3, which is within the expected interval.

Using Eq. (38), we can calculate the relationship between 𝐵 and
𝑄𝐴∕𝑘𝐴 for our nominal Didymos system, shown in Fig. 21, for a BYORP-
tide equilibrium. There is additional uncertainty around the size of both
Didymos and Dimorphos, as well as the system bulk density which we
have calculated independently using the system dynamics. Using the
error bars on the size and density of these bodies, we also plot an
uncertainty envelope around the 𝐵𝑄𝐴∕𝑘𝐴 curve in Fig. 21.

On Fig. 21, we plot our nominal estimate for 𝐵 that matches the
𝑄𝐴∕𝑘𝐴 value we adopted as a red dot. While this corresponds to a
reasonable value of 𝐵, there is still a range of possibilities that should
be considered. For example, for values of 𝐵 within 10−3 − 10−2, 𝑄𝐴∕𝑘𝐴
could vary by nearly an order of magnitude in either direction. While
the consistency seen here lends confidence to our selection of 𝑄 ∕𝑘 ,
𝐴 𝐴
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Fig. 23. For the stable system 𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1, we vary the value of 𝑄𝐵∕𝑘𝐵 while keeping 𝑄𝐴∕𝑘𝐴 = 105 constant. For 200 years, we plot the libration angle (top left),
normalized free energy (top right), semimajor axis (bottom left), and eccentricity (bottom right). The dissipation rates of the libration amplitude and eccentricity strongly depend
on 𝑄𝐵∕𝑘𝐵 . For very dissipative secondaries, the free energy initially decreases, which is not the case for secondaries with larger 𝑄𝐵∕𝑘𝐵 values. The secular rate of semimajor axis
expansion seems independent of 𝑄𝐵∕𝑘𝐵 , but the damping rate of oscillations in semimajor axis does depend on 𝑄𝐵∕𝑘𝐵 .
we will investigate the role different values of 𝑄∕𝑘 have on energy
dissipation, for both the primary and secondary.

In Didymos, BYORP acts to contract the orbit (decrease the semima-
jor axis) (Scheirich and Pravec, 2022). However, from our analysis, the
time for eccentricity and libration to damp to nearly zero is relatively
fast and the semimajor axis changes on the order of only 1 meter
during this time (see Figs. 7 and 9). Thus, during the timescale we are
interested in for this analysis, we expect BYORP to have very little effect
on the dynamics, mainly decreasing the secular slope of semimajor axis
evolution. Furthermore, Quillen et al. (2022) predict that the BYORP
effect is weakened as a result of NPA rotation, so unstable systems
would be affected even less.

The BYORP coefficient is primarily a function of Dimorphos’ shape,
thus the impact and subsequent reshaping of Dimorphos will change
the coefficient at some level. Previous work has shown that significant
reshaping of Dimorphos is possible (Hirabayashi et al., 2022; Nakano
et al., 2022; Raducan and Jutzi, 2022), so it is difficult to predict what
level of change there will be in the BYORP coefficient. For a small
change where BYORP remains contractive, Eq. (38) indicates that the
shift in equilibrium will be small. However if 𝐵 changes significantly,
there could be a significant change to the equilibrium semimajor axis (if
BYORP is contractive) or BYORP could act expansively along with tides
to grow the orbit over time. In either case, however, even a significantly
higher BYORP rate in either direction will have minimal effect on the
orbit over the coming decades.

8. Effect of tidal parameters

As previously mentioned, there is considerable uncertainty sur-
rounding the tidal parameters 𝑄∕𝑘 for both the primary and secondary.
In Section 7 we saw 𝑄 ∕𝑘 can vary by an order of magnitude in
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either direction and still maintain consistency with a reasonable BY-
ORP coefficient and the uncertainty around the shape and density of
Didymos. Thus, we define three values for 𝑄𝐴∕𝑘𝐴 to test: 104, 105, and
106. We use these same values to test 𝑄𝐵∕𝑘𝐵 as well. First, we vary
𝑄𝐴∕𝑘𝐴 over these three values while holding 𝑄𝐵∕𝑘𝐵 = 105 constant.
Then we perform the opposite test by varying 𝑄𝐵∕𝑘𝐵 over the same
values while holding 𝑄𝐴∕𝑘𝐴 constant. In this way we can determine
which behaviors in the system rely mainly on the primary or secondary.
Given how quickly dissipation occurs in our analysis in Section 4, we
do not think it likely that 𝑄∕𝑘 is below 104, and even if it is this would
only speed up the process already observed. Furthermore, it is possible
that 𝑄∕𝑘 is larger than 106, but if this is the case, again the system
would only evolve more slowly than the 106 cases we test below. Thus,
this range of 𝑄∕𝑘 values for both bodies gives us an idea on how the
tidal parameter affects the system evolution. We perform this analysis
for both the stable and unstable systems.

8.1. Stable system

For the stable system (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1), we first hold 𝑄𝐵∕𝑘𝐵 =
105 constant and vary 𝑄𝐴∕𝑘𝐴 between 104 and 106. In Fig. 22, we plot
the libration amplitude, free energy, semimajor axis, and eccentricity
over 200 years. The free energy has been normalized by its pre-impact
equilibrium value. Note this is not a long enough time span for the
system to fully equilibrate, but it is long enough to see the secular
behavior of the system.

From Fig. 22, we see the dissipation of the libration amplitude has
very little dependence on 𝑄𝐴∕𝑘𝐴, indicating it depends almost solely
on 𝑄𝐵∕𝑘𝐵 . Conversely, the semimajor axis has a strong dependence on
𝑄 ∕𝑘 , as evidenced in the plot of free energy and semimajor axis.
𝐴 𝐴
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Fig. 24. For the unstable system 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3, we vary the value of 𝑄𝐴∕𝑘𝐴 while keeping 𝑄𝐵∕𝑘𝐵 = 1𝑒5 constant. For 200 years, we plot the libration angle (top left),
normalized free energy (top right), semimajor axis (bottom left), and eccentricity (bottom right). While the rate of change of the semimajor axis and free energy strongly depend
on 𝑄𝐴∕𝑘𝐴, the libration amplitude and eccentricity are largely independent of primary tidal parameters.
These dependencies are expected from classical tidal theory. Unsur-
prisingly, smaller 𝑄𝐴∕𝑘𝐴 values (more dissipative systems) expand the
orbit more rapidly than large values of 𝑄𝐴∕𝑘𝐴. For small 𝑄𝐴∕𝑘𝐴 values,
the secular trend is faster than the dissipation in semimajor axis oscilla-
tions, whereas large 𝑄𝐴∕𝑘𝐴 values see the opposite, where oscillations
in semimajor axis are damped faster than the secular trend becomes
dominant. In the plot of free energy, we see the least dissipative system
slowly losing free energy while the other systems are monotonically
increasing, which is consistent with the behavior seen in the semimajor
axis. Overall this indicates that when 𝑄𝐴∕𝑘𝐴 is larger than 𝑄𝐵∕𝑘𝐵 ,
the system contracts its orbit first to damp semimajor axis oscillations
and libration amplitude, whereas when 𝑄𝐴∕𝑘𝐴 is smaller than 𝑄𝐵∕𝑘𝐵 ,
the orbit expands faster than the secondary re-equilibrates. Lastly, the
eccentricity damping also appears to have only a small dependence on
𝑄𝐴∕𝑘𝐴, as there are only small differences in the trend between the
values tested here.

Next, we perform the complement of this analysis by holding
𝑄𝐴∕𝑘𝐴 = 105 constant and varying 𝑄𝐵∕𝑘𝐵 between 104 and 106. In
Fig. 23, we plot the libration amplitude, the free energy, semimajor
axis, and eccentricity over 200 years.

In Fig. 23, we see the dissipation of the libration amplitude has a
strong dependence on 𝑄𝐵∕𝑘𝐵 , with smaller values (more dissipative)
damping libration faster. Looking at the free energy, the secular trend
appears to have only a small dependence on 𝑄𝐵∕𝑘𝐵 , but for small
values of 𝑄𝐵∕𝑘𝐵 we see the initial decrease in free energy. While the
case 𝑄𝐵∕𝑘𝐵 = 𝑄𝐴∕𝑘𝐴 = 105 appears to have a slope different from the
other cases, its slope is actually changing slowly and approaching the
same rate as the others. The free energy corresponds to the semimajor
axis, where the secular trend again sees only a small dependence
on 𝑄 ∕𝑘 , but the rate of damping oscillations does have a strong
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dependence on 𝑄𝐵∕𝑘𝐵 . The most dissipative system (𝑄𝐵∕𝑘𝐵 = 104)
damps the oscillations fastest and appears to have an initial trend of
decreasing semimajor axis (consistent with the decrease in free energy).
This indicates that systems with a very dissipative secondary initially
contract the orbit to reestablish equilibrium. Lastly, we see a strong
dependence of eccentricity damping on 𝑄𝐵∕𝑘𝐵 , with more dissipative
systems unsurprisingly damping eccentricity the fastest. Again, these
dependencies are expected from classical tidal theory.

8.2. Unstable system

We next repeat the same analysis by varying 𝑄𝐴∕𝑘𝐴 and 𝑄𝐵∕𝑘𝐵 for
the unstable system (𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3). First, we hold 𝑄𝐵∕𝑘𝐵 =
105 constant while varying 𝑄𝐴∕𝑘𝐴 between 104 and 106. We plot the
libration amplitude, free energy, semimajor axis, and eccentricity for
this analysis in Fig. 24.

Overall, we see very similar behavior between the unstable and
stable system. Consistent with classical tidal theory, it appears the
libration amplitude and eccentricity damping are largely unaffected
by the value of 𝑄𝐴∕𝑘𝐴 during this time. Again, the secular trend of
free energy and semimajor axis strongly depend on 𝑄𝐴∕𝑘𝐴 as expected.
When 𝑄𝐴∕𝑘𝐴 > 𝑄𝐵∕𝑘𝐵 (i.e. 𝑄𝐴∕𝑘𝐴 = 106, 𝑄𝐵∕𝑘𝐵 = 105), the damping
rate of semimajor axis oscillations is faster than the secular trend, and
as a result we see an overall decrease in the free energy. At a longer
timescale we expect both the semimajor axis and free energy to begin
increasing as the orbit expands.

We next hold 𝑄𝐴∕𝑘𝐴 = 105 constant and vary 𝑄𝐵∕𝑘𝐵 between 104

and 106. For this test, the libration amplitude, free energy, semimajor
axis, and eccentricity are plotted in Fig. 25.
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Fig. 25. For the unstable system 𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3, we vary the value of 𝑄𝐵∕𝑘𝐵 while keeping 𝑄𝐴∕𝑘𝐴 = 1𝑒5 constant. For 200 years, we plot the libration angle (top left),
normalized free energy (top right), semimajor axis (bottom left), and eccentricity (bottom right). The dissipation rates of the libration amplitude and eccentricity strongly depend
on 𝑄𝐵∕𝑘𝐵 . For very dissipative secondaries, the free energy initially decreases, which is not the case for secondaries with larger 𝑄𝐵∕𝑘𝐵 values. The secular rate of semimajor axis
expansion seems independent of 𝑄𝐵∕𝑘𝐵 , but the damping rate of oscillations in semimajor axis does depend on 𝑄𝐵∕𝑘𝐵 .
Again, there are strong similarities between the unstable and stable
case. The damping rate of libration amplitude and eccentricity strongly
depend on 𝑄𝐵∕𝑘𝐵 , while the secular trends in semimajor axis and free
energy seem ignorant of 𝑄𝐵∕𝑘𝐵 , as expected from classical tidal theory.
However, the damping rate of semimajor axis oscillations does depend
heavily on 𝑄𝐵∕𝑘𝐵 , with more dissipative secondaries (small 𝑄𝐵∕𝑘𝐵)
damp these oscillations faster than the secular trend develops, and as
a result the free energy of the system initially decreases.

Based on these analyses of 𝑄𝐴∕𝑘𝐴 and 𝑄𝐵∕𝑘𝐵 , we can conclude
that the libration amplitude, eccentricity, and oscillations in semimajor
axis mostly depend on 𝑄𝐵∕𝑘𝐵 , while the secular trend of the orbit,
i.e. semimajor axis expansion, is driven by 𝑄𝐴∕𝑘𝐴. When systems have
a more dissipative secondary, they re-enter equilibrium before any
noticeable secular change in the orbit develops, whereas when systems
have a more dissipative primary the re-equilibrization of the secondary
takes longer than the secular evolution of the orbit.

9. Discussion

In this work we attempt to outline the possibilities of energy dissi-
pation after a DART-like perturbation both in the long- and near-term,
investigating dissipation both in stable and tumbling systems. We im-
plement tidal torque and non-principal axis dissipation in a simple
sphere–ellipsoid approximation of binary asteroids. We find that both
stable and tumbling systems dissipate energy on comparable timescales
to return to a synchronous configuration. Previous studies have claimed
that tumbling greatly reduces the rate of energy dissipation (Wisdom
et al., 1984; Naidu and Margot, 2015; Quillen et al., 2022), but this
is only for the non-synchronous case. Our results agree with Quillen
et al. (2020) in that tumbling within the synchronous state can increase
16
energy dissipation, and the libration amplitude damps to zero before
predicted for planar rotation. A unique result we find is that non-
principal axis rotation can damp as quickly as planar libration for
strongly coupled systems with efficient dissipation. We find in these
systems the libration amplitude, both stable and unstable, is tied closely
to the orbit eccentricity and oscillations in the semimajor axis, as all of
these dissipate on the same timescale. For especially dissipative sys-
tems, the system returns to equilibrium before any substantial secular
trend is apparent.

For near-term dynamics relevant to the Hera mission, we find
systems experiencing stable in-plane libration systematically dissipate
energy to return to an equilibrium, synchronous configuration. How-
ever, systems with out-of-plane tumbling do not have a systematic trend
during the short time between DART’s impact and Hera’s rendezvous
thanks to chaotic dynamics. Thus, the shape of Dimorphos is paramount
in predicting energy dissipation, as not only does the shape place the
system in the stable/unstable region, it also dictates the magnitude
of post-impact libration. Generally, more elongated shapes and shapes
in the unstable region have the largest libration amplitude and the
largest relative change in free energy following the impact. However,
the secondary excess energy can vary randomly within the unstable
region, and in the stable region less elongated shapes (i.e. shapes with
a smaller initial libration amplitude) have the largest relative decrease
in secondary excess energy. The rate of libration damping also depends
on the shape, as unstable shapes again can see random changes in
the libration amplitude. In the stable region, resonances play a large
role in how the libration amplitude dissipates, but in general this is
not expected to exceed a few degrees in the years between the DART
impact and Hera’s arrival, even in the most dissipative cases. However,
there are some cases, with a very dissipative secondary, in which a
small initial libration amplitude can decrease by 20%–30%. The largest
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Fig. 26. The libration amplitude for 6 additional secondary shapes from both the stable and unstable regions. Every shape has a similar damping timescale regardless of stability.
Fig. 27. The secondary energy (top), orbit energy (middle), and total energy (bottom)
of the stable system (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1) for the sphere–ellipsoid and high-fidelity
gubas models. While there are differences between the models, the overall trends are
consistent.

decrease in eccentricity is found for shapes with the largest initial
libration amplitude, but overall this change is still small, on the order of
0.01 over 5 years for very dissipative systems. Thus, there is potential
17
Fig. 28. The 1–2–3 Euler angles of the stable system (𝑎∕𝑏 = 1.2, 𝑏∕𝑐 = 1.1) for the
sphere–ellipsoid and high-fidelity gubas models. While there are differences between
the models, the overall trend is consistent.

for non-negligible changes to occur in the system before Hera’s arrival,
contingent on the secondary’s stiffness.

While BYORP will factor in to the evolution of the system, we
believe it will have a negligible effect on the actual libration damping.
In Didymos, BYORP contracts the orbit, or shrinks the semimajor
axis (Scheirich and Pravec, 2022). Given the small mean anomaly drift
rate, Didymos is likely near a tide-BYORP equilibrium in which the
tidal expansion is nearly balanced by the BYORP effect. As a result,
we can make a prediction of the BYORP coefficient, which is consistent
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Fig. 29. The secondary energy (top), orbit energy (middle), and total energy (bottom)
of the unstable system (𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3) for the sphere–ellipsoid and high-fidelity
gubas models. While there are differences between the models, the overall trends are
consistent.

Fig. 30. The 1–2–3 Euler Angles of the unstable system (𝑎∕𝑏 = 1.4, 𝑏∕𝑐 = 1.3) for the
sphere–ellipsoid and high-fidelity gubas models. While there are differences between
the models, the overall trends are consistent.

with expected values. After the impact, the system will dissipate energy
to reduce libration and eccentricity, while damping oscillations in the
semimajor axis. During this time, BYORP will continue to shrink the
semimajor axis, unless the impact causes significant reshaping of the
secondary and changes the BYORP coefficient. However, the secular
rate of semimajor axis change is already small, and generally inde-
pendent of the oscillations (the secular rate is driven by the primary,
whereas the oscillations are driven by the secondary). Furthermore,
NPA rotation will also decrease the BYORP effect (Quillen et al., 2022).
18
Thus, we predict the process of libration damping will be largely
independent of the secular changes caused by BYORP over the time
frame of interest here.

By varying 𝑄∕𝑘 for both the primary and secondary, we find that
the rate of libration and eccentricity damping are strongly dependent
on the secondary’s tidal parameters, but largely independent of the
primary’s. By extension, the oscillations in the semimajor axis also are
mainly dependent on the secondary’s tidal parameters. Conversely, the
secular trend in the semimajor axis mainly depends on the primary’s
tidal parameters, but not the secondary’s. Thus, we find systems with
𝑄𝐵∕𝑘𝐵 < 𝑄𝐴∕𝑘𝐴 damp libration and eccentricity faster than secular
changes in the orbit become apparent. This also corresponds to an
initial decrease in the free energy before the semimajor axis begins
expanding, unless the initial libration amplitude is small. On the other
hand, when 𝑄𝐵∕𝑘𝐵 > 𝑄𝐴∕𝑘𝐴, the secular trend in the orbit is immedi-
ately obvious and the damping of libration and eccentricity is relatively
slow in comparison. Thus, if the secondary is very dissipative, Hera
may be able to measure the damping of the libration amplitude and
eccentricity. In these very dissipative systems, the coupling between
eccentricity and libration means the eccentricity dissipates much faster
than predicted by the analytic models of Goldreich and Sari (2009).
Consequently, we do not recommend using an analytic model to ap-
proximate evolution of a coupled system experiencing libration, unless
this system is not very dissipative or is already in an equilibrium.
This also suggests close binary asteroids with measured eccentricity
have either a tumbling secondary or a stiff, non-dissipative secondary,
consistent with Pravec et al. (2016).

Future work on this topic is necessary after both the DART impact
and Hera’s survey. These missions will provide more information on
the system, specifically the secondary shape and impact strength from
DART and LICIACube and the density and constraints on the tidal pa-
rameters from Hera. With estimates on these parameters, more accurate
predictions can be made on the energy dissipation from Didymos.

Data availability

Data will be made available on request.
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See Fig. 26.
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