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ABSTRACT
The energy dissipation in a uniform vorticity flow, such as the flow in a precessing spheroid or the one associated with the earth’s free core
nutation, is mainly confined to the boundary layers. However, the thinness of the boundary layer renders it difficult to study the energy
dissipation in the turbulent regime, either in laboratory experiments or through direct numerical simulations. Here, we use a local Cartesian
model to study the energy dissipation in the boundary layer of a precessing sphere when the flow becomes turbulent, contrasting it with the
laminar case. We compute the evolution of the boundary layer over time at individual co-latitudes based on direct numerical simulations using
the computational fluid dynamics solver Nek5000. We then estimate the total global dissipation by summing up individual contributions.
A comparison with known analytical results in the laminar case validates this approach. We briefly discuss the applications to the lunar and
the earth’s core cases.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146932

I. INTRODUCTION

Free Core Nutation (FCN) is a rotational normal mode of the
earth. Since its frequency is close to forced nutation, the retrograde
annual nutation, some properties of the FCN can be determined by
measuring the resonant amplitude and the phase lag of the forced
nutation [e.g., Herring et al. (1986)]. Inversions from the observed
phase lag placed an upper bound for the fluid core kinematic vis-
cosity of 0.54 m2 s−1 (Gwinn et al., 1986), about six orders larger
than the value inferred from studies of liquid metal [see the review
of Lums and Aldridge (1991)]; a low viscosity of ν = 10−6 m2 s−1 is
still favored by recent studies based on ab initio calculations [e.g.,
Pozzo et al. (2013) and Ichikawa and Tsuchiya (2015)]. Turbulence
in the core’s boundary layers can lead, in principle, to an enhanced
eddy viscosity. However, Ohmic dissipation in the core and mantle
is a more natural way to explain the observations [e.g., the studies
by Buffett (1992), Mathews and Guo (2005), Deleplace and Cardin
(2006), and Buffett and Christensen (2007)]. However, accounting
for the observed phase lag requires either a strong magnetic field
at the core-mantle boundary (CMB) or a highly conductive layer at
the base of the mantle (Mathews et al., 2002; Buffett et al., 2002).
Although the flow near the CMB associated with the FCN motion is

too weak to be turbulent, the flow associated with precession might
be strong enough to be turbulent (Buffett, 2021; Triana et al., 2021).
Thus, it is important to properly quantify the turbulent contribution
to the energy dissipation from precessional motion to obtain tighter
bounds on the Ohmic dissipation.

Instabilities in the boundary layer of a precession-driven flow
have been previously identified in numerical simulations (Loren-
zani and Tilgner, 2001); however, the thinness of the boundary layer
makes it difficult to study experimentally [see the review of Tilgner
(2015)]. That same reason, combined with current computational
constraints, precludes numerical studies from reaching regimes of
parameters appropriate for planetary interiors where the Coriolis
force plays a central role. This limitation is reflected in the smallness
of the Ekman number E, representing the ratio of viscous to Corio-
lis forces and controlling the thickness Lν of the boundary layer (also
known as the Ekman layer), which scales as Lν ∝ E1/2. We can define
a local Reynolds number Re to quantify the condition for turbulence
in the boundary layer as Re = ULν/ν, where ν is the viscosity and
U is the velocity. For the nominal value of the earth’s precession-
driven flow, the Reynolds number is about Re = 500, higher than
the critical value of Re ∼ 150 for the onset of turbulence proposed
by Sous et al. (2013). With a global spherical model, Cébron et al.
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(2019) showed that the total viscous dissipation increases by a fac-
tor of 1.17 compared to the laminar solution when Re is around 230.
Buffett (2021) restricted the modeling domain to the boundary layer
and broke it into pieces according to the co-latitude θ. Using a local
Cartesian model, similar to ours, he studied two representative cases
at θ = 0 and 60○ and showed that the friction velocity u∗, a quan-
tity proportional to the square root of the surface shear stress (see
the definition below), increases by a factor of 1.2 at Re = 500 com-
pared to the laminar value. Buffett (2021) demonstrated a promising
way to study the turbulent effects in the boundary layer from a local
point of view. However, the connection to the global picture is still
missing. Dissipation depends not only on the surface shear stress
but also on the veering angle β, the angle between the stress and the
fluid velocity on the boundary. In the present work, we numerically
investigate the local flow at different co-latitudes and integrate the
results to obtain global estimates of the possible turbulent energy
dissipation.

Energy dissipation in the lunar core due to precession is a key
parameter in understanding the possible dynamo action of the past
(Stys and Dumberry, 2020; Zhang and Dumberry, 2021). The Re
for the boundary layer flow is about 104, much larger than earth’s.
Therefore, it has been believed that the boundary layer is turbulent
[e.g., Yoder (1981)]. The model by Buffett (2021) is, in principle,
not applicable to the moon not only because of the much higher
Reynolds number but also because the flattening in their model must
be much larger than the ratio of precession to rotation (i.e., the
Poincaré number Po). However, in the lunar case, the latter condi-
tion is not met as the CMB flattening of 10−4 (Viswanathan et al.,
2019) is smaller than the Poincaré number, Po = 4 × 10−3. In order
to extend the result achieved by Buffett (2021), we investigate the
problem by considering the case where the flattening is zero, i.e., a
precessing fluid in a spherical cavity.

The scaling of quantities in the boundary layer can be used
to estimate the dissipation at large Re. The theory for the scal-
ing of u∗ and β in the Ekman layer was proposed by Csanady
(1967). It was later improved by Spalart (1989) by including higher
order terms. Scaling has been studied via laboratory experiments
(Caldwell et al., 1972; Sous et al., 2013) and numerical simulations
(Coleman et al., 1990; Coleman, 1999; Shingai and Kawamura, 2004;
Deusebio et al., 2014; and Braun et al., 2020). However, the Ekman
layer in those studies is steady, i.e., it remains constant all the time,
contrary to the one from precession-driven flow, which oscillates
with diurnal frequency. The study of a Stokes boundary layer, an
oscillating boundary layer but without Coriolis force, reveals com-
plex behavior during the transition to turbulence: an instability
growing in one oscillation cycle may eventually decay at interme-
diate Re (Ozdemir et al., 2014). Besides, analytical solutions show
that the u∗ associated with an oscillatory Ekman layer is smaller
than that of a steady Ekman layer by a factor of 21/4 (Buffett, 2021).
Therefore, we want to know if scaling is applicable to the oscilla-
tory Ekman layer and establish the difference with those previous
studies.

In Sec. II, we present the Navier–Stokes equation in the
fluid frame using local Cartesian coordinates and compare it to
the one used by Buffett (2021). Next, we outline the numer-
ical implementation in Sec. III. Numerical solutions are pre-
sented in Sec. IV. Finally, the discussion and conclusions appear
in Sec. V.

II. PROBLEM FORMULATION
We consider a spherical cavity with radius R filled with an

incompressible and viscous fluid, rotating with angular velocity Ωm
and precessing with angular velocity Ωp. The angle between Ωm and
Ωp is denoted as α, the precession angle. In the case of weak preces-
sion (Ωp ≪ Ωm), the leading order solution for the flow in the cavity
may be expressed as a solid body rotation Ω f , which represents the
mean rotation vector of the fluid. Since the dominant forcing in the
system is solely related to precession and the fluid viscosity ν, the
orientation of Ω f depends on their relative amplitudes. According
to Busse’s theory (Busse, 1968), Ω f can be determined, given the
Poincare number Po = Ωp/Ωm, the Ekman number E = ν/(ΩmR2),
and the precession angle α. We choose our reference frame as the
one rotating with the fluid’s mean angular velocity, and we refer to
it as the fluid frame. In such a frame, the bulk of the fluid remains
at rest, and the cavity rotates with ΔΩ = (Ωm −Ω f ). A boundary
layer exists, the main focus of our study, with a nominal thickness
Lν =
√

ν/Ω f .
In the fluid frame, we define two Cartesian coordinate systems:

one global (X̂, Ŷ , Ẑ) and one local (x̂, ŷ, ẑ) (Fig. 1). For the global
coordinate system, Ẑ is aligned with Ω f , and the coordinate system
co-rotates with the fluid. For the local coordinate system, the x-axis
is eastward, the y-axis is northward, and the z-axis is in the radial
outward direction. The fluid domain extends from z = 0 toward the
negative z-axis. In the fluid frame, the flow velocity u satisfies the
following Navier–Stokes equation:

∂u
∂t
+ u ⋅ ∇u + 2(Ω f +Ωp) × u = −∇P

ρ
+ ν∇2u + r′ × (Ωp ×Ω f ),

(1)
where P is the reduced pressure including the centrifugal force and
r′ is the position vector referring to any point inside the cavity. The
last term, r′ × (Ωp ×Ω f ), is known as the Poincaré term [coined
by Malkus (1968)] or the Euler term, which is associated with the
fictitious force appearing in such a non-uniformly rotating reference
frame. Since the flow is mainly confined to the viscous boundary
layer, we take Lν as the length scale to analyze Eq. (1). We further
assume that Lν is much smaller than the cavity radius R, so the cavity
curvature is neglected in the local model. Together with the differ-
ential velocity U = R∣ΔΩ∣ as the velocity scale, Eq. (1) can be written
in dimensionless form as

∂u∗

∂t∗
+ u∗ ⋅ ∇∗u∗ + 2

Re
[k̂ f + Po(Ωm

Ω f
)k̂p] × u∗

= −∇∗P∗ + 1
Re
∇∗2u∗ + (Lν

R
)(Ωm

ΔΩ
)

2
Po(Ω f

Ωm
)

×[(Lν

R
)r∗ + R̂](k̂p × k̂ f ), (2)

where Re = ULν/ν is the Reynolds number and R̂ = R/R is a unit vec-
tor. A superscript (∗) denotes dimensionless variables (the variable
u∗ is not to be confused with the friction velocity u∗ introduced
later). In the local coordinate system, the vector k̂ f is given by
cos θ ẑ + sin θ ŷ, where θ is the co-latitude.

Before moving on to the boundary conditions, we find it nec-
essary to specify the orientations of Ωm and Ω f in a coordinate
system defined in the precessing frame, which rotates with Ωp. In
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FIG. 1. Sketch of a spherical cavity with a local box. Two coordinate systems are shown: global (X̂ , Ŷ , Ẑ) and local ( x̂, ŷ, ẑ). The two vectors x̂ and ŷ denote the unit vectors
along the directions of longitude ϕ and (negative) co-latitude θ, respectively.

the precessing frame, both vectors are stationary based on the theory
proposed by Busse (1968). The coordinate system, denoted as
(X̂p, Ŷp, Ẑp), is defined such that it coincides with (X̂, Ŷ , Ẑ) at t = 0;
otherwise, the latter is rotating with Ω f in the precessing frame.
Moreover, Ωm is tilted toward negative X̂p, forming an angle θ f
relative to Ω f (see below for the definition of θ f ). Under the no
spin-up condition (i.e., Ω f = Ωm sin θ f ), the differential rotation
vector will be lying on the equatorial plane: ΔΩ = −ΔΩX̂p. The
coordinate is then transformed to (X̂, Ŷ , Ẑ) in the fluid frame and
further to (x̂, ŷ, ẑ) for the computation of boundary velocity, which
is ΔΩ × R. Explicit expressions of the transformations are given in
Appendix A. In the local coordinate system, the boundary condi-
tion at the lower end (z∗ → −∞) is u∗ = 0 (i.e., the bulk of the
fluid sufficiently away from the boundary is at rest). Note that,
in the numerical implementation discussed below, the lower end
is set at z∗ = −30. On the fluid surface (z∗ = 0, corresponding to
the CMB),

u∗x = cos θ cos (Ω f t + ϕ), (3a)

u∗y = − sin (Ω f t + ϕ), (3b)

u∗z = 0, (3c)

where ϕ is the longitude. Thanks to the azimuthal m = 1 symmetry
of the flow, it is anticipated that the local flow field at a given ϕ0
is equivalent to the flow at the prime meridian (ϕ = 0) with a lag
time ϕ0/Ω f . For the numerical implementation, we set ϕ = 0, and
then the azimuthal dependence is retrieved directly from Ω f t for
post-processing analysis, that is, a time-average can be treated as an
azimuthal average.

To determine Ω f , we use the reduced model developed by
Cébron et al. (2019) [i.e., their Eqs. (5)–(7)]. Their solutions are

obtained in the precessing frame where a Cartesian coordinate
system (X̂′p, Ŷ ′p, Ẑ′p) is defined such that the Ẑ′p-axis and Ωm are
aligned. The spherical coordinates of Ω f are denoted as the co-
latitude θ f and the longitude ϕ f . The coordinates are transformed to
the local system by three steps: (1) rotation of the coordinate system
to align the Ẑ′p-axis with Ω f , (2) transformation from the precessing
frame to the fluid frame, and (3) transformation from the global sys-
tem to the local system. Details about the transformation are given
in Appendix A. So far, we are ready to solve Eq. (2) numerically.

We use the lunar parameters listed in Table I as an end-
member case to estimate the amplitude of the Poincaré term, where
∣k̂p × k̂ f ∣ = sin γ, and find that the amplitude is 3 × 10−10. The ratio
of the amplitudes of the Poincaré term to the viscous term is
4 × 10−6, which is the value obtained in the turbulent regime where
Re = 1.67 × 104. In the laminar regime, say Re = 5, we find the ratio
is 7 × 10−3, thus allowing us to drop the Poincaré term in the
Re range discussed in the present study. Second, we consider the
magnitude of (Ωm/Ω f ), which is equal to cos−1 θ f under the no
spin-up condition. Given θ f = 1.543○ at Re = 1.67 × 104, the mag-
nitude is very close to unity with a difference of 0.04%. With lower
Re (high ν), the angle θ f will be even smaller, thus making (Ω f /Ωm)
closer to unity. Third, the condition of weak precession (Po≪ 1)
allows us to drop the precession vector in the Coriolis term. With
these approximations, we arrive to the reduced form of Eq. (2),

∂u∗

∂t∗
+ u∗ ⋅ ∇∗u∗ + 1

Re
(2k̂ f × u∗) = −∇∗P∗ + 1

Re
∇∗2u∗. (4)

For comparison, we numerically solve both Eqs. (2) and (4) at
Re = 500 and find no significant difference between the two solu-
tions (see Fig. S1 in the supplementary material). In other words,
neglecting the precessional terms makes no difference in our case.
In the following, all the discussions will be based on Eq. (4). We
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TABLE I. Lunar parameters used in this study. R is the radius of the lunar core-mantle
boundary (Viswanathan et al., 2019). α is the angle between the symmetry axis and
the ecliptic normal. We use Eqs. (5)–(7) of the study by Cébron et al. (2019) to com-
pute Ω f ; the orientation (θ f , ϕ f ) is given by the coordinate system (X̂ ′p, Ŷ ′p, Ẑ′p)
whose Ẑ′p is aligned with Ωm (see Appendix A). The angle between Ω f and Ωp is
denoted by γ.

Parameter Definition Units Value

ν m2 s−1 10−6

Ωm rad s−1 2.66 × 10−6

Ω f Ωm cos θ f rad s−1 2.659 × 10−6

Ωp rad s−1 1.07 × 10−8

R km 380
Lν

√
ν/Ω f m 0.61

α deg 1.543
θ f deg 1.543
ϕ f deg 0.060
γ deg 0.002
U RΩm sin θ f m s−1 2.72 × 10−2

Po Ωp/Ωm 4 × 10−3

E ν/(R2Ωm) 3 × 10−12

Re ULν/ν 1.67 × 104

note that Eq. (4) is generally identical to the one derived for a pre-
cessing spheroidal cavity [see the Appendix of the study by Buffett
(2021)], even though the reasons to drop the Poincaré term are
different. In a precessing spheroid, the Poincaré term is balanced
by the terms associated with the flattening. Nevertheless, both for-
mulations make the governing equation resemble a simple rotating
fluid. The appearance of Eq. (4) may seem counter-intuitive indeed,
but it is important to remember the initial assumption that the con-
tainer is precessing and that the flow is mostly a uniform vorticity
flow. The local model aims to examine the flow in a small rectangular
box near the boundary. Precession comes into play when we deter-
mine Ω f . The only difference to the study by Buffett (2021) lies in
the selection of the rotation vector, where we employ Ω f in contrast
to Ωm used by Buffet. Considering the aforementioned assump-
tion, that is, Ω f /Ωm ≈ 1, the discrepancy between the two vectors
becomes negligible. Nevertheless, we think that adopting Ω f is more
appropriate and self-consistent as the local model requires the bulk
fluid to be at rest, a condition that may not hold when employing
Ωm in the mantle frame. In Appendix B, we derive the analytical
solution in the laminar regime where Re is small and the non-
linear term can be neglected, which matches the numerical result,
as expected.

Next, we compute the dissipation in the boundary layer. In the
local system, the input (output) power from the surface shear stress
τ is equal to the increase (decrease) of internal and kinetic energies
[see, e.g., Sec. 16 in the study by Landau and Lifschitz (2013)],

S(u ⋅ τ)z=0 = Ėint + Ėkin, (5)

where S is the surface area. The increase in internal energy is fur-
ther linked to the energy dissipated in the system. Therefore, for
an equilibrium system where the change in kinetic energy reaches
zero, the viscous power can be used to infer the dissipation. Suppose

that the area S corresponds to a small patch on the cavity
surface dS = sin θ R2dθdϕ, we compute the total dissipation via
Dν = − ∫ (τ ⋅ u)dS. The local viscous power per unit area is defined
as P visc = τ ⋅ u for later use. We can integrate the laminar analyti-
cal solutions to obtain the global laminar dissipation as [e.g., in the
study by Cébron et al. (2019)]

D lam
ν = −2.62 IΔΩ2√νΩ/R, (6)

where I = (8π/15)ρR5 is the moment of inertia of the fluid. This
result is consistent with the torque approach, which is given in
Appendix B. A script for the computation is included in the
supplementary material.

In the turbulent regime, the surface shear stress no longer fol-
lows the analytical solution, so we prescribe the turbulent stress as
kρ∣u∣u [e.g., in the study by Williams et al. (2001)], where k is a
dimensionless parameter that depends on the viscosity. The total
turbulent dissipation −(45π/32)kIΔΩ3 is obtained by integrating
the negative viscous power over the spherical surface. Since dis-
sipation is independent of the orientation of ΔΩ, one can take
ΔΩ = ΔΩẐ to simplify the computation, as performed by Yoder
(1981). For an arbitrary orientation, we obtain the same coefficient,
−(45π/32), by approximating the integral as a Riemann sum. Note
that the stress prescription assumes that the stress is aligned with the
velocity, which is not true for most cases (see Fig. S10 for the veering
angle at different values of θ), so the turbulent torque derived from
this definition should thus be treated with extra care. In order to
determine the parameter k, we adopt the approach by Cébron et al.
(2019) and require P visc, computed from turbulent and laminar
stresses (B17) and (B18), to match θ = 0; it gives k = (u∗/U)2 cos β,
where u∗ =

√
∣τ∣/ρ is the friction velocity and β is the veering angle,

the angle between the surface shear stress and the fluid velocity
on the boundary. We notice that, when we substitute the laminar
solutions u∗ =

√
νU/Lν and β = 45○ into k and compute the total

turbulent dissipation, the obtained dissipation disagrees with the
laminar expectation given in Eq. (6). To reconcile the inconsistency,
we define the turbulent dissipation as

D turb
ν = −2.62

√
2kIΔΩ3, (7)

In principle, one can match P visc at any θ. We choose θ = 0 because
the asymptotic similarity theory is used to estimate the friction
velocity and veering angle at this special case, where the presence
of a logarithmic layer supports the use of the theory. The purpose of
this modification is to provide a way to compute k and relate it to the
total dissipation, which can be compared to our numerical results.

III. NUMERICAL IMPLEMENTATION
We use the spectral element code Nek5000 (Fischer et al., 2007)

to solve Eq. (4) for an incompressible fluid in a Cartesian box. The
domain is divided into E elements, where solutions are represented
by N-th order Lagrange interpolation polynomials (see Fig. 2). The
typical resolution in the present study is E = 768 and N = 9. The tem-
poral discretization is based on a third-order backward-difference
scheme for implicit terms and on an extrapolation scheme for
explicit terms. We use dealiasing following the 3/2 rule.
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FIG. 2. Box model with Cartesian coordinates. The typical resolution is E = 768
and N = 9. The dimension of the box is 30 × 30 × 30 in the unit of Lν. The element
density is higher near the top boundary to resolve the boundary flow.

The domain is extended downward from z = 0. The non-
dimensional size is 30 × 30 × 30. The top boundary is a wall (rep-
resenting the CMB), where the velocity is specified to mimic the
precessing container (mantle), as seen from the fluid frame [see
Eq. (3)]. The four lateral boundaries are periodic. The bottom
boundary is stress-free (i.e., no tangential stress), and the normal
velocity is zero. We have performed a height test to make sure that
the domain height of 30Lν is large enough to accommodate the
boundary layer flow (see Fig. S2 in the supplementary material). To
resolve the boundary layer flow, we use a higher element density near
the top boundary. We will explore the parameter space: Re = [5, 500]
and θ = [0, 90○]. Simulations for Re = 700 are added to extend the Re
range. We also simulate the case with Re = 600 at θ = 0. The range of
Re covers both the laminar and turbulent regimes of the oscillatory
Ekman layer.

The simulation always starts from the fluid at rest, where a ran-
dom perturbation in velocity with root-mean-square amplitude of
about 10−2 is imposed. In most cases, the flow will go through a tran-
sient state for a certain period and reach a statistically steady state
(we shall refer to it as a steady state for the sake of brevity in the
following sections), which means time-averaged quantities over the
oscillation period(s) remain constant. The mean values presented
below are obtained by taking time averages over oscillation periods.
Due to the homogeneity on x- and y-directions, all the values are
also averaged on the horizontal plane. The unit of time t⊕ presented
below is 2π/Ω f , indicating the period of the oscillating boundary.
In what follows, the superscript (+) denotes the quantities non-
dimensionalized by the viscous wall scales, velocity u∗, and length
ν/u∗. The notation is chosen to describe the flow near the boundary.

IV. RESULTS
We present now our numerical results, comparing them with

analytical solutions, highlighting the difference between laminar and
turbulent regimes. Then we use the numerical results in the tur-
bulent regime together with the asymptotic theory to construct a
turbulence model for the energy dissipation. Finally, we compute
the total dissipation based on the local model and calibrate the
turbulence model accordingly.

A. Friction velocity and kinetic energy
The friction velocity u∗ is a quantity commonly used to moni-

tor the amplitude of surface shear stress ∣τ∣: u∗ =
√
∣τ∣/ρ [e.g., in the

study by Tennekes et al. (1972)]. At θ = 0, Eqs. (B19) and (B20) give
the laminar solution ulam

∗ = Re−1/2U, which serves as the benchmark
for low Reynolds number cases. Figure 3 shows the ratio u∗/ulam

∗ as
a function of time at θ = 0 for different values of Re. We see that the
friction velocity deviates from its laminar solution when Re ≥ 300
and the deviation is larger for higher Re. Concerning the case of
Re = 300, it appears that the deviation from the laminar solution by
about 10% can be attributed to turbulence, as supported by the pres-
ence of a logarithmic region presented later in this study. We observe
that the transient period happens before t⊕ = 3 (before t⊕ = 1 for
Re = 400 and higher) and the friction velocity reaches a steady value.
The result is consistent with the one from the study by Buffett (2021),
where the solution at Re = 500 is about 20% larger than the laminar
value after the onset of turbulence. To obtain the mean value, we
take a time average over the interval 1 ≤ t⊕ ≤ 5, except for Re = 300
where we use the 3 < t⊕ < 5 interval (see Table II).

Figure 4 shows the total kinetic energy, Ekin, for Re = 500 at
different values of θ. We observe that the total kinetic energies
reach a steady state for most cases. It implies that the time-averaged
change in the kinetic energy is zero, ⟨Ėkin⟩ = 0, and the system is
in equilibrium state. According to Eq. (5), we can use the viscous
power to approximate the dissipation. Although we can compute the

FIG. 3. Friction velocity ratio u∗/ulam
∗ as a function of time with different values of

Re at θ = 0. The means deviate appreciably from unity when Re ≥ 300 and almost
reach 1.3 when Re = 500. The Re = 5, 100, 200 curves overlap nearly completely.
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TABLE II. Main results of the present study. Time-averaged values are obtained from the range 1 ≤ t⊕ ≤ 5, except for the
case Re = 300 where the range used is 3 ≤ t⊕ ≤ 5. The values of the friction velocity and the veering angle are obtained
from the cases with θ = 0.

Re ⟨u∗⟩/ulam
∗ ⟨u∗⟩/U ⟨β⟩ (deg) ⟨Dν⟩/D lam

ν

5 1.00 ± 0.00 0.447 192 ± 0.000 419 45.002 058 ± 0.095 827 0.96
100 1.00 ± 0.00 0.099 973 ± 0.000 224 45.010 85 ± 0.229 41 0.96
200 1.00 ± 0.00 0.070 693 ± 0.000 158 45.010 364 ± 0.229 03 0.97
300 1.13 ± 0.02 0.064 989 ± 0.001 234 29.350 199 ± 1.461 621 1.34
400 1.21 ± 0.02 0.060 584 ± 0.001 197 25.635 712 ± 1.273 489 1.61
500 1.29 ± 0.03 0.057 866 ± 0.001 131 22.978 039 ± 1.135 976 1.86
600 1.37 ± 0.03 0.055 831 ± 0.001 122 21.037 396 ± 1.317 849 ⋅ ⋅ ⋅
700 1.43 ± 0.03 0.054 069 ± 0.001 123 20.081 535 ± 1.411 917 2.42

FIG. 4. Total kinetic energy Ekin with different values of θ at Re = 500. Most cases
reach steady state within t⊕ = 5, while a long-period modulation is observed for
θ = 50○ and an indefinite increase is observed for θ = 60○.

dissipation directly from our model, the reason to use P visc is two-
fold: (1) it is consistent with the conventional torque approach
to compute the dissipation, and (2) we want to apply the turbu-
lence model that is associated with the surface shear stress (i.e., u∗).
A figure showing the time evolution of the three quantities (Ėint,
Ėkin, and P visc) for the case at Re = 500 and θ = 0 is given in the
supplementary material (see Fig. S3), verifying the energy balance
equation [Eq. (5)]. In Fig. 4, a longer transient period is observed at
θ = 50○, but the flow eventually reaches a steady state. At θ = 60○,
we see that Ekin increases without reaching saturation within the
default simulation time t⊕ = 5. This phenomenon is directly related
to the well-known anomalous behavior of the Ekman boundary
layer thickness at the so-called critical latitude, which in our case
is precisely at θ = 60○ [see, e.g., Sec. 8.07.1.4 in the study by Tilgner
(2015)].

Figures 5 and 6 show the viscous power per unit area P visc

for the cases θ = 50○ and 60○ with longer simulation time. The
time-averaged value over four oscillation periods is plotted in dots.
The orange dot indicates the value obtained in the default range,

FIG. 5. Viscous power per unit area P visc (light blue curve) for the cases θ = 50○
with longer simulation time. Blue dot: time-averaged value over four oscillation
periods. Orange dot: value obtained in the default range 1 ≤ t⊕ ≤ 5. The default
range is sufficient to obtain a steady value. The dashed line shows the laminar
solution obtained in Appendix B.

1 ≤ t⊕ ≤ 5. As can be seen, for θ = 50○, the power reaches a steady
value within t⊕ ≤ 5, suggesting that t⊕ = 5 is sufficient for most
cases. On the other hand, θ = 60○ requires a longer transient before
reaching a steady value, which approximates the laminar solution.
This finding suggests that we should replace the value obtained in
the default range by its laminar solution when computing the total
dissipation.

B. Mean velocity profiles

Figure 7 shows the horizontal velocity Q+ =
√

u′x 2 + u′y 2/u∗
at different Reynolds numbers with θ = 0 and t⊕ = 5. The over-
bar indicates the spatial average on the horizontal plane, and the
prime symbol denotes the difference with respect to the boundary
velocity, i.e., u′i = ui − ui(z = 0). We adopt this notation in order
to compare our results to the law of wall formalism [see the study
by Tennekes et al. (1972)]. According to the formalism, the veloc-
ity profile is divided into three parts: a viscous sublayer Q+ = ∣z+∣, a
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FIG. 6. Same as Fig. 5 but for θ = 60○. The simulation runs longer than the default
range required for the viscous power to reach a steady value, which seems to
approach the laminar solution.

buffer layer, and an inertial sublayer Q+ = (1/0.41) log∣z+∣ + 5. The
inertial sublayer is also known as the logarithmic region. As shown
in Fig. 7, the velocity profiles approach the one predicted by the
law of the wall when Re ≥ 300. A constant slope reveals the pres-
ence of a logarithmic region. The inset of Fig. 7 shows the Kármán
measure Ξ = (∣z+∣dQ+/d∣z+∣)−1 (i.e., the reciprocal of the slope) for
Re ≥ 300. A clear logarithmic region develops after Re ≈ 300. In the
supplementary material, we show the velocity profiles at different
time instants for the case Re = 300 and find that the appearance of
a logarithmic layer coincides with an appreciable deviation of the
dissipation from its laminar value, as expected from the presence of

FIG. 7. Mean horizontal velocity Q+ =
√

u′x 2
+ u′y 2

/u∗ at different Reynolds
numbers with θ = 0 and t⊕ = 5. Dotted line: Q+ = ∣z+∣ for ∣z+∣ ≤ 10
and Q+ = (1/0.41) log ∣z+∣ + 5 for ∣z+∣ > 10. (Inset) Kármán measure
Ξ = (∣z+∣dQ+/d∣z+∣)−1 for Re ≥ 300. Dashed line: Ξ = 0.41. The x-axis is ∣z+∣,
and the y-axis is Ξ.

turbulence. Besides, the velocity profiles show a maximum above the
logarithmic region, which is usually referred to as a low-level jet and
is also observed for a steady Ekman layer (Deusebio et al., 2014). The
fact that the maximum is not well represented in the case of Re = 700
implies that the domain height should be increased accordingly if we
want to extend the Re range.

C. Similarity theory
The similarity theory (Csanady, 1967; Spalart, 1989) establishes

a relationship between u∗ and Re of the following form:

U
u∗

cos ϑ + 2
0.41

ln
U
u∗
= 2

0.41
ln Re − 1

0.41
ln 2 + B, (8)

sin ϑ = A
U/u∗

, (9)

ϑ = β + 2C5

Re2 (
U
u∗
)

2
, (10)

where 0.41 is known as the von Kármán constant. The constants
A, B, and C5 are to be determined by fitting with either experi-
mental or numerical results. We use our numerical solution from
Re = 300, 400, 500, 600, and 700 to find the best fit parameters
A = 5.74 and B = 1.55 with C5 = −25 (solid lines in Figs. 8 and 9).
The parameters are obtained by performing a least-squares fit.
Dashed lines show analytical solutions derived in the laminar regime
for comparison. The fitting is good for the friction velocity u∗ but
rather inaccurate at Re ≈ 200 for the veering angle β. For compari-
son, results for an steady Ekman layer are plotted in gray: u∗ is about
8% larger while β seems to reach an asymptotic limit at Re ≥ 103.
Comparison to the model proposed by Sous et al. (2013) is shown

FIG. 8. Ratio u∗/U as a function of the Reynolds number. Blue circles: numerical
solution; black line: best fit with A = 5.74, B = 1.55, and C5 = −25; dashed line:
laminar solution. Results for a steady Ekman layer from previous studies are plot-
ted with gray circles (Spalart, 1989; Coleman et al., 1990; Coleman, 1999; Shingai
and Kawamura, 2004; Marlatt et al., 2012; and Braun et al., 2020); dotted-dashed
line is the corresponding best fit with A = 5.40, B = 0.26, and C5 = −52. In the
turbulent regime, u∗ is about 8% larger than the one for an oscillatory Ekman
layer.

AIP Advances 13, 075025 (2023); doi: 10.1063/5.0146932 13, 075025-7

© Author(s) 2023

 06 M
arch 2024 08:08:19

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 9. Following Fig. 8. The veering angle β between surface shear stress and
boundary velocity seems to reach an asymptotic limit when Re ≥ 103.

in the supplementary material (Figs. S5 and S6). Based on our best
fit parameters, we compute u∗ and β for a given Re in the turbulent
regime and then use Eq. (7) to obtain the dissipation, comparing it
with the one obtained from our local model.

D. Viscous dissipation
Figure 10 shows the viscous power per unit area ⟨Pvisc∗⟩ at each

co-latitude θ, which we compute by taking a time-average in the
default range, 1 ≤ t⊕ ≤ 5, except for the case Re = 300 (see Sec. IV A).
Note that we multiply the power by Re to remove the viscosity
dependence and to see the effect of turbulence. As it can be seen,

FIG. 10. Time-averaged viscous power per unit area ⟨Pvisc∗
⟩ multiplied by Re at

different co-latitudes θ (○). The gray dash line is computed viaP visc
= τ ⋅ u, where

τ and u are given by Eqs. (B6)–(B8), (B17), and (B18); the solutions obtained in
the laminar regime where the non-linear term is neglected correspond to the cases
of small Re.

when Re ≥ 300, the power increases at almost every θ compared to
the laminar solution, while the models with Re ≤ 200 remain close
to the laminar solution. Given Re ≥ 300, the increments are not the
same across θ. No increment is observed at the equator and is barely
present near the critical latitude. As shown in Sec. IV A, the small
increment at the critical latitude is the consequence of insufficient
simulation time; the power will eventually reach the laminar solu-
tion, given long enough simulation time. This latitude variation can
be attributed to the orientation of the rotation vector of the fluid,
which goes from perpendicular to the flow at the pole to parallel
at the equator. When parallel, there is no Coriolis force, and the
Ekman boundary layer flow will reduce to the well-studied Stokes
type, whose critical Reynolds number for the fully turbulent regime
Re = 2500 [see, e.g., the study by Ozdemir et al. (2014)] is higher than
the present setting.

Figure 11 shows the total global dissipation Dν in the boundary
layer at different values of Re. We obtain a global value by integrating
the contributions from each numerical simulation at different values
of θ, using the trapezoidal rule. That means the dissipation in the
interval, say, for example, 10○ < θ < 20○, is obtained by linear inter-
polation. Since the flow is symmetrical along the azimuthal direction
and with respect to the equator, we only need to integrate over the
range 0 ≤ θ ≤ 90○. As we have seen in Sec. IV A, Ekin remains steady
for most cases, and the viscous power from surface shear stress will
be equal but with an opposite sign to the internal dissipation. Con-
cerning the diverging case at the critical latitude, we replace the value
by its laminar solution to avoid overestimation. Therefore, we inte-
grate −P visc over the spherical surface to obtain Dν. To see the effect
of turbulence, we normalize the numerical solution with the laminar
solution [Eq. (6)], so it should be very close to unity in the lami-
nar regime if our numerical approach is valid. As can be seen at
Re = 5, the difference in the laminar solution is about −4%, which
is associated with the limited number of co-latitudes used. The dissi-
pation deviates from the laminar solution when Re ≥ 300. A similar
behavior was also observed in the global model by Cébron et al.
(2019), where dissipation is found to be mainly confined to the

FIG. 11. Boundary layer dissipation Dν as a function of Re. The dissipation is
normalized by its laminar solution D lam

ν . Blue circle: present study; gray square:
Cébron et al. (2019). Dashed line: turbulence model D turb

ν with χ = 1.0 and
χ = 0.85.
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boundary layer. Next, we plot the dissipation predicted by the tur-
bulence model D turb

ν [Eq. (7)] using a dashed line (Fig. 11). It
can be seen that the prediction overestimates the dissipation when
Re ≥ 300. Since the turbulence model assumes that the parameter
k at different values of θ is the same as the one at the pole, this overes-
timate is possibly due to the latitudinal dependence shown in Fig. 10.
Even from the limited Re range given in this study, latitudinal vari-
ation in the turbulence effect is evident, thus raising the concern of
the reliability of the turbulence model based on k, which is typically
treated as a constant in the literature. To accommodate the discrep-
ancy, we introduce a new parameter χ and rewrite the turbulent
dissipation as

D turb
ν = −2.62

√
2χkIΔΩ3. (11)

We find that χ = 0.85 marks the lower bound for the results obtained
in this study. The dissipation obtained at Re = 300, 400, and 500 falls
on the curve of χ = 0.85, which means the total dissipation is reduced
by about 15% due to the possible laminar flow near the equator. The
excess dissipation at Re = 700 shows a hint of increasing dissipation
when Re is even larger.

V. DISCUSSION AND CONCLUSIONS
We have derived the governing equation for the boundary layer

generated by the precession-driven flow in a spherical cavity using a
local Cartesian coordinate system. Both the order of magnitude esti-
mation and the numerical solution suggest that the Poincaré term
is negligible in the boundary layer if precession is weak. In order
to solve the governing equation numerically, we constructed a local
Cartesian box model to simulate the boundary layer flow. In the
laminar regime, we found that the total energy dissipation, which
is computed from the local contributions obtained from the individ-
ual box models, is consistent with the laminar value from previous
studies based on a global model [e.g., Cébron et al. (2019)]. In the
turbulent regime, we have found that (1) the flow at certain latitudes
(i.e., θ = 60○ and 90○) may remain laminar and (2) the total energy
dissipation deviates appreciably from the laminar value. For the flow
at the pole, θ = 0, the energy dissipation begins to deviate from the
analytical laminar expectation when Re ≥ 300, and the flow exhibits
turbulent characteristics, such as a logarithmic layer region, allow-
ing us to use an asymptotic similarity formalism. Using this, we have
computed the asymptotic curves for both u∗ and β as a function of
Re, which can be used to compute the total energy dissipation in the
turbulent regime via turbulence models.

In the conventional turbulence model, the total turbulent dissi-
pation is given as −(45π/32)kIΔΩ3, where parameter k is supposed
to quantify the asymptotic behavior of the local dissipation in the
turbulent regime at high Re. Note that the derivation of the model
implicitly assumes that k is independent of latitude. Following the
same approach as that followed by Cébron et al. (2019) to estimate
k via k = (u∗/U)2 cos β, we have found that both (u∗/U) and β at
high Re can be computed from the best fit asymptotic curve obtained
at θ = 0. In order to recover the laminar solution [Eq. (6)] when Re
goes into the laminar regime, we propose a turbulence model by
writing the total dissipation as Eq. (7). The overestimation of the tur-
bulence model, compared to the value obtained from the numerical
solution, suggests that the assumption on k may be inappropriate. At

least for the case of Re = 500, our numerical solution shows that the
flow is not even turbulent at certain latitudes. A thorough investiga-
tion on the latitudinal variation on k combined with an investigation
of the flow asymptotic behavior at each latitude would be helpful to
establish a more reliable turbulence model. That aside, the uncer-
tainty of the turbulence model given by Eq. (7) is about 15% in the
Re ≤ 700 range.

The previous study by Deusebio et al. (2014) shows that the
asymptotic theory applied to the intermediate Re range (400 < Re
< 775), where a logarithmic layer is observed, is sufficient to get a
good prediction of u∗ and β at high Re (=1600). We adopt the theory
for an oscillatory Ekman layer at θ = 0 not only because we see the
logarithmic layer in the flow (Sec. IV B) but also because the theory
should be generally unaffected by imposing a time varying boundary
velocity. The theory developed by Csanady (1967) and Spalart (1989)
is based on the assumption that there exists an overlapping region
where the velocity profiles in both the inner layer (viscous sublayer)
and the outer layer (free-stream region) match, a fact unaffected by
imposing time dependence.

Application to the earth’s core is possible since the numerical
results presented here are based on the reduced form of the gov-
erning equation [Eq. (4)], which is identical to the one derived for
a spheroidal cavity such as Earth by Buffett (2021). We are able
to reach the earth’s parameter regime with the local Cartesian box
model, so we do not need to rely on any turbulence model, which
will be discussed in the following. Our numerical result shows that
the total energy dissipation in the turbulent regime at Re = 500 is
1.86 times of the laminar value. If the damping of FCN shares the
same increasing factor, then the effective viscosity will increase by a
factor of 3.5, which is still far below the required amount (6 orders
of magnitude higher) inferred from the observation. It implies that
the electromagnetic coupling may play a significant role in closing
the gap.

An accurate calculation of the energy dissipation at the CMB
in the moon is unfeasible since we not only lack a proper turbu-
lence model but also because interior models obtained from seismic
and gravity measurements are poorly constrained. There are three
relevant parameters: (1) the angle between the rotation axes of
the core and the mantle, (2) the lunar core radius, and (3) the
moment of inertia of the fluid core. There is no direct measure-
ment for the orientation of the core rotation axis. According to the
dynamic argument that the lunar CMB flattening is smaller than its
Poincaré number, the core is unlikely to share the precession of the
mantle (Goldreich, 1967); the core rotation axis should thus be
closely aligned with the ecliptic normal. We use the reduced
model by Cébron et al. (2019) to compute the orientation of Ω f
(see Table I). The plausible range of the core radius obtained
from gravity measurements is 200–380 km (Williams et al., 2014;
Viswanathan et al., 2019). If we take the core radius as 380 km, then
the relative velocity at CMB will be around 2.72 × 10−2 m s−1, and
the Reynolds number will be 1.67 × 104. We obtain the moment of
inertia of the fluid core by taking the moment ratio C f /C = 7 × 10−4

(Williams et al., 2014). With our best fit parameters (A, B, C5) and
the reduced turbulence model [Eq. (11)], we obtain Dturb

ν = 72 or
84 MW for χ = 0.85 or 1.0, respectively. For a smaller core, say
Re = 200 km, with the same moment ratio, the Reynolds num-
ber reduces to 8.79 × 103 while the dissipation increases by about
10%. For comparison, we also compute the dissipation with the
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parameters (A = 7.32, B = −2.67) (Sous et al., 2013, the conver-
sion to the present notation is presented in Appendix C) and
the conventional turbulence model, −(45π/32)kIΔΩ3 [see Sec. II;
e.g., Cébron et al. (2019)]; the obtained value is 126 MW, about
60% larger than our result. According to the analysis of lunar
laser ranging (LLR) data, the dissipation at CMB is about 58 MW
(Williams et al., 2001), 84 MW (Williams et al., 2014), and 73 MW
(Williams and Boggs, 2015), respectively. Concerning the uncer-
tainty of the interior model, it is still insufficient to say if our model
matches the observation or not, but at least we provide a set of para-
meters with numerical support, which can be used for the turbulence
model. A sensitivity test on the parameters (A, B, C5) shows that (1)
β is sensitive to A and also sensitive to C5 when Re < 103 and (2) the
sensitivity of u∗/U to both A and B decreases as Re increases (see
Figs. S7–S9 in the supplementary material).

The implication for planetary cores with turbulent boundary
layers should be interpreted with care. In this study, the quoted Re
for Earth and the Moon is obtained based on the laminar solution
[e.g., Busse (1968) and Cébron et al. (2019)], where the boundary
layer is treated in the laminar regime, even though the obtained
Re suggests the other way around. For Earth, the conclusion that
the turbulence effect is unlikely to account for the observed FCN
damping remains as Earth is at the margin of turbulence. For the
Moon, our purpose is to demonstrate a way to forward-compute the
dissipation, and a more comprehensive model is needed for future
exploration.

We aim to demonstrate that through appropriate formula-
tion, it is feasible to complement the results from global models.
By narrowing our focus to the boundary layer exclusively, we can
expand the parameter range and explore the turbulent regime.
Potential applications of this approach include spin-up, libration,
and precessing cylinders (Pizzi et al., 2021).

SUPPLEMENTARY MATERIAL

See the supplementary material for the figures of friction veloc-
ity showing the comparison between the solutions obtained from
Eqs. (2) and (4), velocity profiles for the domain height test, energy
balance for the case of Re = 500 and θ = 0, velocity profiles of
Re = 300 and θ = 0 at different time instants, u∗ and β as a func-
tion of Re with the comparison to the result of Sous et al. (2013), and
sensitivity test on (A, B, C5), β as a function of θ.
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APPENDIX A: TRANSFORMATION BETWEEN
REFERENCE FRAMES AND COORDINATE SYSTEMS

The solution of Ω f from the study by Cébron et al. (2019)
is given in the precessing frame where the coordinate system
(X̂′p, Ŷ ′p, Ẑ′p) is defined such that Ẑ′p is aligned with Ωm and Ωp is on
the X̂′p–Ẑ′p plane with the co-latitude α (Fig. 12). We use (θ f , ϕ f )

FIG. 12. Schematic diagram for the associated vectors and transformations. (Left) The angle between Ωm and Ωp is α. The co-latitude and longitude of Ω f are θ f and ϕ f ,
respectively. Note that the magnitudes and orientations of Ωm, Ωp, and Ω f are not to scale. (Middle) Counterclockwise rotation through ϕ f about Ẑ′p. (Right) Counterclockwise

rotation through θ f about Ŷ ′′p .
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to denote the orientation of the fluid rotation vector. Since the
global coordinate system (X̂, Ŷ , Ẑ) defined in the present study has
two features—Ẑ is aligned with Ω f and it is defined in the fluid
frame—we need a series of transformations to adopt the solution
in the present study. First, we implement a two-step rotation: (1)
rotation about Ẑ′p in the counterclockwise direction by ϕ f and (2)
rotation about the intermediate axis Ŷ ′′p in the counterclockwise
direction by θ f [see, e.g., the study by Thornton and Marion (2003)].
The transformation matrices are

λ1 =
⎛
⎜⎜⎜⎜
⎝

cos ϕ f sin ϕ f 0

− sin ϕ f cos ϕ f 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

(A1)

and

λ2 =
⎛
⎜⎜⎜⎜
⎝

cos θf 0 − sin θf

0 1 0

sin θf 0 cos θf

⎞
⎟⎟⎟⎟
⎠

. (A2)

The coordinate of a vector x in the new coordinate system
(X̂p, Ŷp, Ẑp) is given by [x]p = λ2λ1[x]′p. The rotations are chosen so
that Ωm is on the X̂p–Ẑp plane and leaning toward negative X̂p with a
co-latitude θ f , which gives the boundary conditions consistent with
the ones mentioned in the main text. Second, a transformation from
the precessing frame to the fluid frame is given by [see, e.g., the study
by Noir and Cébron (2013)]

λ3 =
⎛
⎜⎜⎜⎜
⎝

cos Ω f t sin Ω f t 0

− sin Ω f t cos Ω f t 0

0 0 1

⎞
⎟⎟⎟⎟
⎠

. (A3)

Finally, in order to solve the governing equations in the local
coordinate system, one further transformation is needed, which is
given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X̂ = sin θ cos ϕ r̂ + cos θ cos ϕ θ̂ − sin ϕ ϕ̂,

Ŷ = sin θ sin ϕ r̂ + cos θ sin ϕ θ̂ + cos ϕ ϕ̂,

Ẑ = cos θ r̂ − sin θ θ̂,

(A4)

where r̂ = ẑ, θ̂ = −ŷ, and ϕ̂ = x̂ (see Fig. 1). For example, the coor-
dinates of the fluid rotation vector Ω f , which in the (X̂′p, Ŷ ′p, Ẑ′p)
system is given by Ω f (sin θ f cos ϕ f , sin θ f sin ϕ f , cos θ f ), in the
local coordinate system (x̂, ŷ, ẑ) are (0, Ω f sin θ, Ω f cos θ). The
coordinates of Ωp and R̂ × (k̂p × k̂ f ) are computed in the same way.

APPENDIX B: ANALYTICAL SOLUTION

We analytically solve Eq. (4) in its dimensional form together
with the continuity equation,

∂u
∂t
+ u ⋅ ∇u = −1

ρ
∇P + ν∇2u − 2Ω f × u, (B1)

∇ ⋅ u = 0, (B2)

where Ω f = Ω f k̂ f is the fluid rotation vector and P is the reduced
pressure, including the centrifugal force. In the local coordinate
system, the vector k̂ f is given by cos θ ẑ + sin θ ŷ, where θ is the co-
latitude. Following Eq. (3), the boundary conditions require u = 0
at z = −∞; at z = 0, the velocities are ux = U cos θ cos(Ω f t + ϕ),
uy = −U sin(Ω f t + ϕ), and uz = 0, where U is the relative velocity
of the mantle and ϕ is the longitude. We have to note that the
governing equations generally imply a simple rotating fluid with
angular velocity Ω f , and this due to the fact that the Poincare term
is neglected in the boundary layer of the precession-driven flow.
However, precession enters the formulation through the boundary
conditions. Nevertheless, the following formulation, borrowed from
the classic Ekman layer analysis, serves not only to demonstrate the
flow but also to validate the result against known solutions in the
literature.

Analytical solutions are available to validate our numerical
results in the laminar regime. Equation (B1) can be solved ana-
lytically by making some assumptions. First, we assume that the
system is horizontally uniform, so the solution must be indepen-
dent of x and y. From the continuity equation ∇ ⋅ u = 0, we further
have ∂uz/∂z = 0. Given that no vertical motion is allowed on the top
boundary, we end up with uz = 0 everywhere. Equation (B1) then
becomes

∂ux

∂t
− 2Ω f cos θ uy = −

1
ρ
∂P
∂x
+ ν

∂2ux

∂z2 , (B3)

∂uy

∂t
+ 2Ω f cos θ ux = −

1
ρ
∂P
∂y
+ ν

∂2uy

∂z2 , (B4)

2Ω f sin θ ux = −
1
ρ
∂P
∂z

. (B5)

At infinity, given ux = uy = 0, the horizontal pressure gradient
should be zero: ∂P/∂x = ∂P/∂y = 0. Since ux is independent of x and
y, the derivative of Eq. (B5) shows that the horizontal pressure gra-
dient is an invariant of height. That means the horizontal pressure
gradients are not involved in the horizontal force balance.

From the boundary conditions, we assume that the solutions
for the oscillatory Ekman layer are in the form

ux = Re[ei(Ω f t+ϕ)qx(z)], (B6)

uy = Re[ei(Ω f t+ϕ)− iπ
2 qy(z)], (B7)

uz = 0, (B8)

where qx(z) and qy(z) are the functions to be solved. Substituting
the solutions into Eqs. (B3)–(B5) and solving for qi(z), we end up
with

qx(z) = C1eσ+z + C2eσ−z , (B9)

AIP Advances 13, 075025 (2023); doi: 10.1063/5.0146932 13, 075025-11

© Author(s) 2023

 06 M
arch 2024 08:08:19

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

qy(z) = C1eσ+z − C2eσ−z , (B10)

where C1 = U(cos θ − 1)/2, C2 = U(cos θ + 1)/2, and
σ± =

√
Ω f /ν

√
(1 ± 2 cos θ)i. Notice that the sign of the term

(1 ± 2 cos θ) changes at θ = 60○ and 120○, so we cannot simply
expand σ± at this stage. The above-mentioned expression is easy to
implement for numerical computation. To get the physical picture,
we expand the solution at the three representative co-latitudes:
θ = 0○, 90○, and 60○. At the north pole (θ = 0), the solution reads

ux = Ue
z√
2Lv cos(Ω f t + ϕ − z√

2Lv

), (B11)

uy = −Ue
z√
2Lv sin(Ω f t + ϕ − z√

2Lv

), (B12)

where Lν =
√

ν/Ω f is the thickness of the steady Ekman layer. Given
t0 and ϕ0, the solution shows an Ekman spiral, which decays expo-
nentially to the depth. On top of that, the spiral is rotating in the
clockwise direction. At the equator (θ = 90○), the boundary drives
the fluid in the direction parallel to the rotation vector: there is no
Coriolis force acting on the flow. The type of the boundary flow then
reduces to the Stokes boundary layer [see, e.g., the study by Landau
and Lifshitz (2013)],

ux = 0, (B13)

uy = −Ue
z√
2Lv sin(Ω f t + ϕ − z√

2Lv

). (B14)

The depth of penetration is usually defined as
√

2ν/Ω f =
√

2Lν. At
critical latitudes where one of σ± becomes zero, the velocity profile
shows a non-decaying component; here is the case of θ = 60○,

ux = U[−1
4

e
z

Lν cos(Ω f t + z
Lv
) + 3

4
cos Ω f t], (B15)

uy = U[−1
4

e
z

Lν sin(Ω f t + z
Lv
) − 3

4
sin Ω f t]. (B16)

That means the flow will penetrate all the way down into the bulk
of the fluid and the boundary layer has infinite thickness, which
is against the very first assumption of horizontal uniformity—the
vertical gradient in velocity is relatively larger than the horizon-
tal ones in the thin boundary layer. This breakdown in the local
approximation, already pointed by Bondi and Lyttleton (1953), was
shown numerically to spawn internal shear layers, which has negli-
gible contribution to the total dissipation (Hollerbach and Kerswell,
1995).

The shear stress can be computed directly from the velocity.
The viscous stress tensor is given by sik = μ(∂iuk + ∂kui), where μ
is the dynamic viscosity (note ν = μ/ρ is the kinematic viscosity)
[see, e.g., Eqs. (15.2) and (15.8) in the study by Landau and Lif-
shitz (2013)]. On the top boundary z = 0, given the normal vector
n̂ = ẑ, the surface shear stress exerted on the fluid is τi = sijnj, i.e.,
τx = μ∂zux and τy = μ∂zuy,

τx = Re[μei(Ω f t+ϕ)(σ+C1 + σ−C2)], (B17)

τy = Re[μei(Ω f t+ϕ)− iπ
2 (σ+C1 − σ−C2)], (B18)

in the local Cartesian coordinate system. Similarly, we give the
solutions at the pole and the equator. At θ = 0, we have

τx =
μU√
2Lv

(cos Ω f t − sin Ω f t) = μU
Lv

cos (Ω f t − 45○), (B19)

τy =
−μU√

2Lv

(sin Ω f t + cos Ω f t) = −μU
Lv

sin (Ω f t − 45○). (B20)

Comparison to the boundary velocity shows that the velocity is lead-
ing the stress by 45○. We define the veering angle β as the phase
difference between the boundary velocity and the surface shear stress
(One can also consider the velocity and the stress vectors in com-
plex form, e.g., u = ux + iuy, and define the veering angle β as the
argument difference between τ and u, i.e., β = Arg[τ] −Arg[u].
However, the definition is only valid at the poles where the vector
components have the same magnitude.). It determines the magni-
tude of the viscous power from τ: smaller β means larger power. At
θ = 90○, we have

τx = 0, (B21)

τy =
−μU√

2Lv

(sin Ω f t + cos Ω f t) = −μU√
2Lv

sin (Ω f t + 45○). (B22)

Comparison with the boundary velocity at θ = 90○ shows that the
stress is leading the velocity by 45○. We note that the phases derived
from the x- and y-components evolve in opposite directions when
θ increases from 0○ (see Fig. S10 in the supplementary material).
Derived from the y-component, β increases from −45○ at the north
pole to +45○ at the critical latitude and then remains until the
equator. The flow shows distinct features in the polar region and
equatorial region, with the border being θ = 60○.

From this Cartesian model, we compute the viscous torque on a
spherical surface S of radius R by integrating the local contributions:
Γ = ∫ R × τdS. In a spherical coordinate system, we have τθ = −τy
and τϕ = τx, where τx and τy are local stresses given by Eqs. (B17) and
(B18). The local torque is R × τ = −Rτϕθ̂ + Rτθϕ̂. The total torque is
given by integrating over the whole spherical surface. After changing
to a global Cartesian coordinate system (X̂, Ŷ , Ẑ), we have the torque
exerted on the core,

ΓX = ∫ (− cos θ cos ϕτϕ − sin ϕτθ)R3 sin θdθdϕ, (B23)

ΓY = ∫ (− cos θ sin ϕτϕ + cos ϕτθ)R3 sin θdθdϕ, (B24)

ΓZ = ∫ sin θτϕR3 sin θdθdϕ. (B25)

The integrals can be computed numerically. In the end, we have

Γ = −IΔΩ
√

νΩ f

R
[(0.258 sin Ω f t + 2.62 cos Ω f t)X̂

+ (−2.62 sin Ω f t + 0.258 cos Ω f t)Ŷ], (B26)
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where I = (8π/15)ρR5 is the moment of inertia of the sphere.
In the fluid frame, the torque circulates in the clockwise direc-
tion. Transformed back to the precessing frame [see Eq. (A3)], the

torque becomes Γ = −IΔΩ
√

νΩ f

R (2.62X̂p + 0.258Ŷp). We note that
the imposed boundary velocity in our local model implies that the
vector of differential rotation is given by ΔΩ = −ΔΩX̂p. In this case,
Eq. (B26) agrees with the ones derived from previous studies [e.g.,
the studies by Yoder (1981), Williams et al. (2001), and Cébron et al.
(2019)], where the results are based on the solution for the spin-
over mode (Greenspan, 1968). In principle, the boundary velocity
can be modified to represent other types of flow (e.g., spin-up),
and the above-mentioned formulation can be applied to derive the
corresponding torque [e.g., the study by Noir and Cébron (2013)].

APPENDIX C: SIMILARITY THEORY

The basic theory is given by Eqs. (8) and (9) with ϑ = β [or set
C5 = 0; see, e.g., the study by Coleman et al. (1990)]. To avoid con-
fusion, we label the constants in the study by Sous et al. (2013) as Ã
and B̃. Comparing to their Eqs. (12) and (13), we find that

B = − Ã
0.41

− 1
0.41

ln( z0

ν/u∗
) (C1)

and

A = B̃
0.41

, (C2)

where z0 = 0.11ν/u∗ for the smooth surface case. Their best fit
result gives (Ã = 3.3, B̃ = 3.0), which in our convention is (A = 7.32,
B = −2.67).
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