


Simple example of the fluid layer in a planet.
Ω⃗

Ricb Rcmb

• incompressible, homogeneous fluid

∇ · u⃗ = 0 ; (1)

• no background density gradient;
• no magnetic field;
• solid inner core and mantle rotating
with constant angular velocity Ω

Ω⃗ = Ωẑ . (2)



Simple example of the fluid layer in a planet.
Ω⃗

Ricb Rcmb

Linear, non-dimensional version of the
Navier Stokes equation in the frame
rotating with constant angular velocity Ω.

∂tu⃗+ 2ẑ× u⃗ = −∇p+ Ek∇2u⃗ , (3)

with Ek = ν/ΩRcmb, the ratio between
viscous and Coriolis forces.

Solutions to this equation are called
inertial waves.



Inviscid inertial waves.

The dispersion relation setting Ek = 0:

ω = ±2ẑ · k̂ (4)

• Frequency ω independent of
wavelength |k|

• group velocity vg is perpendicular to
phase velocity vp

⇒ inertial waves can superpose to form
wave packets that propagate with vg along
straight characteristics of the equation.



Reflection law of inviscid inertial waves.

When inertial waves reflect off solid
boundaries the angle γ = k̂ · ẑ is
conserved.

tan γ = ±
(
4− ω2

ω2

)−1/2

(5)



Viscous inertial waves.

Reintroducing viscosity the (numerical)
solutions for inertial waves are
characterized by internal shear layers.



Rossby waves.

Rossby waves are a type of inertial waves
characterized by the conservation of
absolute vorticity ζa.

� Fig 1. Illustration of Rossby wave mechanism by
Zaqarashvili et al. (2021).



Rossby waves.

In spherical geometry θ, ϕ the 2D
dispersion relation of Rossby waves is
given by:

ω

Ω
=

−2m

ℓ(ℓ+ 1)
(6)

wherem and ℓ are the harmonic order
and degree of the waves.

� Fig 1. Illustration of Rossby wave mechanism by
Zaqarashvili et al. (2021).



Gravity waves.

Ricb Rcmb

Ignoring rotation and viscosity, but
introducing radial stratification in the form
of gravity ĝ = gr̂ results in:

∂tu⃗ = −∇p− ρ′

ρ0
gr̂ , (7)

∂tρ
′ = −u⃗ ·∇ρ0 (8)

Solutions to this set of equations are
called gravity waves.



Gravity waves.

Ricb Rcmb

The dispersion relation for gravity waves:

ω2 = N2 cos2(v̂g · r̂) (9)

and depends on the Brunt-Väisälä
frequency N :

N2 = g⃗ ·∇
(
ρ′

ρ0

)
(10)

a measure for the stratification strength of
the fluid.



Gravito-inertial waves.
Ω⃗

Ricb Rcmb

Combining inertial and gravity effects
results in:

∂tu⃗+ 2ẑ× u⃗ = −∇p− ρ′

ρ0
gr̂+ Ek∇2u⃗ , (11)

∂tρ
′ = −u⃗ ·∇ρ0 (12)

Solutions to these equations are called
gravito-inertial waves.



Example of an inviscid gravito-inertial wave.

Buoyancy modifies the structure of the
characteristics (Friedlander & Siegmann,
1981a):

• characteristics are curved
• characteristics are normal and reflect
off a turning surface:

r2 cos2 ϕ
ω2 − 1

+
z2

ω2
=

1

N2
(13)

For |ω|/Ω < N and |ω|/Ω < 2 the flow is
confined between two hyperbolic
surfaces.



Example of a viscous gravito-inertial wave

Reintroducing viscosity causes internal
shear layers to appear again.



Summary of the waves in planetary fluid cores.

dominant forces properties

inertial waves Coriolis internal shear layers in the full
spherical shell

Rossby wave Coriolis only exist in thin shells if ℓ ̸= m
gravity waves buoyancy flow becomes more horizontal when

buoyancy force increases
gravito-inertial waves Coriolis, buoyancy internal shear layers in part of the

spherical shell



Examples of stable layers in the solar system.



Numerically exploring rapidly rotating planets.

Numerical tool that solves the linear
Navier-Stokes equation:
• for a viscous, incompressible and
conductive fluid;

• enclosed within near-spherical
boundaries;

• option: imposed magnetic field;
• option: imposed density gradient.

Fig 2. Example of a buoyancy profile for Kore,
characterized by RICB = 0.4, RCC = 0.7, h = 0.2

and N(RCMB) = NCMB = 100



Core flow induced byMercury's librations

Librations are periodic variations in the
rotation rate of a planet or satellite.

Fig. 3 Observed and numerically
computed spin rate deviations. Figure
taken from Margot et al. (2007).



Libration forcing as a boundary condition.



The stable layer suppresses radial flowmotions.
� Fig 4. Meridonial cut of the
kinetic energy density (ϕ = 0) of the
core flow in response to the axial
libration forcing in a core without
stratification and a stratified core
with NCMB = 100, RICB = 0.4,
RCC = 0.7 and h = 0.2 (Seuren et al.,
2023, under review).



The stable layer suppresses resonance effects.
� Fig 5. Meridonial cuts of the kinetic energy
density (ϕ = 0) with librationally forced
motions in the bottom row and eigensolutions
in the top row, without stratification in the left
column and with stratification in the right
column.



The stable layer promotes a strong horizontal
flow near the boundary.

� Fig 6. Radially
averaged velocities
and radial vorticity
of the flow near the
boundary in
response to the
radial libration
forcing (Seuren et
al., 2023, under
review) .



Rossby waves in the Sun.

Fig 7. Power spectrum of the
observed solar surface radial
vorticity by Loptiën et al. (2018).

Fig 8. Power spectrum of the radial vorticity in the solar radiative
interior (pink dash-dotted line on the right figure) from an MHD
simulation by Blume et al. (2023), AGU poster.



Nom ̸= ℓ Rossby waves in the full sphere.
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� Fig 9. Shell width versus frequency and
damping of a sectoral (m = ℓ) and a tesseral
(m ̸= ℓ) Rossby-like wave.



Stable stratification serves as a rigid boundary.

20 40 60 80 100

Stratification strength (N/Ω)

−1000

−900

−800

−700

−600

−500

−400

−300

−200

F
re

q
u

en
cy

(n
H

z)

Least damped (m=2, l=2) and (m=2, l=3) Rossby-like modes

-9.12e-04

-2.48e-03

-6.74e-03

-1.83e-02

-4.98e-02

-1.35e-01

-3.68e-01

D
am

p
in

g
(τ
/Ω

)

� Fig 10. Stratification strength versus
frequency and damping of a sectoral (m = ℓ) and
a tesseral (m ̸= ℓ) Rossby-like wave.



Potential weak and thin stably stratified layer
near Earth's outer core boundary.



Effect of a weak (N/Ω = 1) stably stratified layer.

Fig 10. Eigenvalue spectrum without a
stably stratified layer.

Fig 11. Eigenvalue spectrum with a
stably stratified layer.



Columnar waves in the stratified layer.

� Fig 11. Meridonial cut of the kinetic energy
density of a wave propagating in the stably
stratified outer layer.



Coupling between inertial and GI waves.

� Fig 12. Meridonial cut of the kinetic energy
density of a inertial wave in the convective core
coupled to a gravito-inertial wave in the stably
stratified outer layer.




