

Spectroscopic binaries

and high-order systems

in large surveys

Thibault Merle

thibault.merle@ulb.be thibault.merle@oma.be 2023-11-06

2

Outline

Introduction: why should we care about stellar multiples?

I. Spectroscopic binaries in the Gaia-ESO Survey (GES)

II. HD 74438: a young spectroscopic quadruple uncovered in GES

III. Spectroscopic binaries in other surveys

Introduction: single star evolution

Introduction: binary star evolution

Introduction: multiple stars architecture

Circular binary system

Elliptical binary system

Introduction: multiple stars architecture

Triple system (unstable) 1+1+1

Hierarchical triple system 2+1

Introduction: multiple stars architecture

Quadruple system 2+2 2 hierarchical levels Quadruple system 3+1 3 hierarchical levels

Twitter: @galaxy_map

Based on the catalog of stars, brown dwarfs and planets described in "The 10 pc sample in the Gaia era", Reylé, Jardine et al, Astronomy & Astrophysics (2021)

Introduction: multiplicity statistics in early-type stars

Introduction: multiplicity statistics in late-type stars

Introduction: why do we care about stellar multiples? 1. Benchmarking

Benchmarks for fundamental stellar parameters like mass, radius & luminosity as well as the stellar parallax

Detached binary stars evolve as single stars:

- Cornerstones on which single-star evolutionary models are anchored
- Provide precise mass-radius and massluminosity calibration scales

Introduction: why do we care about stellar multiples? 2. Stellar formation

(a) Filament Fragmentation (b) Core Fragmentation (c) Disk Fragmentation (d) Capture * × Models * * * Δt ~ 0.5 Myr 0.2 Myr 0.1 Myr 1 Myr ΔL ~ 0.01 - 0.25 pc 10 - 500 au 0.01 - 0.1 pc < 1 pc ervation B5-Cond1 5-IRS B5-Con 10.000 au 1.000 au 100 au 100 au Simulations 100 au 10.000 au 100 au 1.000 au

- Elementary mechanisms
 - Filament/core/disk fragmentation
 - Dynamical interaction
- Observations
 - B5 in Perseus (Pineda et al. 2015)
 - SM1N in Ophiuchus (Kirk et al. 2017)
 - L1448 IRS3B in Perseus (Reynolds et al. 2021)
 - RW Aur (Rodriguez et al. 2018)

Simulations

- Guszejnov et al. (2021)
- Offner et al. (2016)
- Bate (2018)
- Muñoz et al. (2015)

Offner+ (2022)

Introduction: why do we care about stellar multiples? 3. Stellar evolution

Introduction: why do we care about stellar multiples? 3. Stellar evolution

Introduction: How do we detect stellar multiples?

- Visual/astrometric/interferometric binaries = AB
 - Eclipsing/photometric binaries = EB
 - Spectroscopic binaries = SB

Introduction: the method of radial velocities (RV)

Introduction: why spectroscopic binaries (SB)?

- Their detection is insensitive to the distance
- They probe the shorter part of the period distribution
- Several SB catalogues attached to various ground-based surveys (RAVE, APOGEE, etc.)
- The Ninth Catalogue of Spectroscopic Binary Orbits (SB9, Pourbaix+ 2004): last release in March 2021 with ~ 4000 orbits

Outline

Introduction: why should we care about stellar multiples?

I. Spectroscopic binaries in the Gaia-ESO Survey (GES)

II. HD 74438: a young spectroscopic quadruple uncovered in GES

III. Spectroscopic binaries in other surveys

I. The Gaia-ESO Survey (GES)

Large spectroscopic surveys with GIRAFFE (R~20 000) and UVES (R = 47 000) spectrographs

Study of the formation history of stellar populations of the Milky-Way: > 100 000 stars in bulge, discs, halo and stellar clusters (Gilmore et al. 2022, Randich et al. 2022) GES DR5.1 final release in July 2023: https://www.eso.org/qi/catalogQuery/index/393 Observing strategy not adapted to the detection of binaries but:

- Merle, Van Eck, Jorissen et al. (2017): ~ 340 SB2, ~10 SB3 & 1 SB4 •
- Merle, Van der Swaelmen, Van Eck et al. (2020): ~800 SB1
- Van der Swaelmen, Merle, Van Eck et al. (accepted) > 430 SB2 •

I. Measuring RV with Cross-Correlation Function (CCF)

CCF used to measure RV by combining information of thousands lines:

Binary stars showing composite spectrum are easily detected with their CCFs

I. How to detect SB with one visible component (SB1)?

60 000 stars At least N = 2 exposures S/N ≥ 3

Statistical
$$\chi^2$$
-test: $\chi^2_{N-1} = \sum_{i=1}^N \left(\frac{v_i - \bar{v}}{e_i}\right)^2$

F2 statistics (Wilson&Hilferti 1931):

$$F2(\chi^2, N) = \sqrt{\frac{9(N-1)}{2}} \left[\left(\frac{\chi^2}{N-1}\right)^{1/3} + \frac{2}{9(N-1)} - 1 \right]$$

 $\chi^2_{N-1} \rightarrow F2: \mathcal{N}(0, 1)$ independent of **N**

I. How to detect SB with *n* visible components (SB*n*, $n \ge 2$)?

- Developed and used in Merle et al. (2017)
- Also used in: Kravchenko et al. (2019) Betelgeuse, Traven et al. (2020) GALAH, Merle et al. (2022) SB4
- Under implementation in the 4MOST galactic pipeline

I. Statistical properties of SB1 in the GES

500 300 iDR6 SB1 C iDR6 3σ SR1 R SB1 C SB1 C 250 SB1 A 400 4σ SB1 B SB1 B aiants 10³ 5σ SB1 A SB1 A dwarfs 200 300 150 10^{2} 200 100 100 10^{1} 50 0 10 30 40 50 20 60 0.1 0 10 100 -2 $^{-1}$ $|\Delta v_{max}|$ [km/s] σ_v [km/s] $\log (P[d])$

Merle, Van Eck, Jorissen et al. (2020), Merle+ (in prep.)

- RV amplitude estimator: $K = \sqrt{2} \sigma_v$
- mass of the primary: $M = 1 M_{\odot}$
- mass ratio *q* = 0.25
- random inclination on the sky: $i = 68^{\circ}$
- median eccentricity in the SB9: *e* = 0.2

According to Moe & Di Stefano (2017):

- 30% ± 10% of SB1s contain compact remnant companions
 - Sirius-like binaries with hot white dwarfs
 - Barium stars
- $70\% \pm 10\%$ of SB1s have M dwarfs secondaries

I. Statistical properties of SB1 & SB2 in the (GES)

Parallaxes and G, BP, RP photometry from Gaia DR2: Locii in the color-absolute magnitude diagram of **SB1** and **SB2**

Monte Carlo simulations to estimate the detection efficiency of our methods using the SB9 (Pourbaix+ 2004-2014)

SB1 detection efficiency: 19% SB2 detection efficiency: 62%

Total GES SB frequency: 12%

SB1 frequency: 9.8 ± 1.8% SB2 frequency: ~ 2%

Close binary fraction from Moe & Di Stefano (2017): 15 ± 3%

I. Statistical properties of SB1 & SB2 in the (GES)

I. Improvement of binary detection

New sets of CCFs with optimized masks for HR10 & HR21

NArrow Cross-Correlation Experiment (NACRE):

- Template stars among FGK benchmark stars (Jofré+ 2015)
- Selection of at least 10 weak and unblended lines
- Masking the Ca II IR triplet, H lines and tellurics at the red end

Sensitivity in setup HR21 increases at the level of HR10:

- Decrease of the Δv_{min} from ~60 to 25 km/s
- Increase of the number of SB2 and SB3 by 1/3

Introduction: why should we care about stellar multiples?

I. Spectroscopic binaries in the Gaia-ESO Survey (GES)

II. HD 74438: a young spectroscopic madruple uncovered in GES

III. Spectroscopic binaries in other surveys

DSS2 color²⁰

II. The unique SB4 in the Gaia-ESO Survey

108:42:40

HD 74438 (V = 7.5)
Spectral type: A2V
M ~ 3 M₀

Open Cluster IC 2391 N = 325 (Gaia collab. 2018) $v = 14.98 \pm 0.17$ km/s (Bravi et al. 2018) $d = 146 \pm 8$ pc (Gaia collab. 2018) Age = 43⁺¹⁵₋₇ Ma (Randich et al. 2018)

Already suspected to be a triple: 0.9 mag above the main sequence (Platais et al. 2007)

II. The unique SB4 in the Gaia-ESO Survey

II. Spectroscopic follow-up with HRS/SALT & HERCULES/UCMJO

II. Short-period orbital solutions

II. Long-period orbital solution

Period $P = 5.68 \pm 0.10 \text{ y}$

Eccentricity $e = 0.458 \pm 0.014$

Center of mass velocity $v_0 = 14.54 \pm 0.20$ km/s

Radial velocity amplitudes $K_{AB} = 12.77 \pm 0.28$ km/s $K_{CD} = 18.57 \pm 0.39$ km/s

Periastron time $T_0 = 2 401 089 \pm 7 d$

Argument of periastron $\omega_{\rm AB}$ = 10.6 ± 2.2 °

II. Astrophysical parameters

Kurucz's model atmospheres + 1D radiative transfer code Turbospectrum (Plez, 2012) Spectral fitting in the range [3850 – 5500] Å of HRS/SALT spectra

II. Location in the HR diagram

IC2391 members: Membership & T_{eff} (Randich et al. 2018) Gaia DR2 luminosities from Apsis (Andrae et al. 2018)

Isochrone at 43 My and evolutionary tracks from PARSEC (Bressan et al. 2012)

Luminosities are in excellent agreement!

Spectroscopic masses derived

Inclinations and separations deduced

II. Architecture of HD 74438

ESO proposal accepted with GRAVITY for period 112!

II. Comparison with other 2+2 quadruples

MSC: Multiple Stellar Catalogue Tokovinin (2018)

Less than 10 SB4 characterized so far:

- All dimmer than HD 74438
- 5 of them being doubly EB
- All coplanar or not known

About ~7 quadruples 2+2 in clusters

The 9th catalogue of spectroscopic orbits (SB9, Pourbaix et al. 2014) Doubly eclipsing binary (EB) systems (Zasche et al. 2019) The CD pair is too eccentric for its spectral type

The CD pair has a circularization period smaller than 7-8 d as predicted by Zahn & Bouchet (1989)

II. Multiple star evolution

Secular evolution in triple star: Kozai-Lidov (KL) oscillations (Kozai, 1962, Lidov 1962)

Dynamical interaction in an initially unstable hierarchical triple: Initial mutual inclination *I* in [40, 140]°

Famous example: Algol system (Baron et. al, 2012)

Pejcha (2013) fist study of KL cycles in quadruples (see also: Naoz (2016), Hamers (2018), Fang et al. (2018), Tremaine (2020), etc.)

Multiple Stellar Evolution (MSE) code – Hamers et al. (2021)

- Hierarchical architecture: e.g. 1+2, 2+2, 1+3, 2+3, etc.
- Gravitational dynamics
- Stellar evolution
- Binary interaction
- Triple interaction

II. Example of one realization with MSE (over 2 Gy)

II. The future evolution of HD 74438

In ~50% of simulated cases, at least 1 merger event In ~25% of cases, 3 merger events, leading to WD with masses below the Chandrasekhar limit

Introduction: why should we care about stellar multiples?

I. Spectroscopic binaries in the Gaia-ESO Survey (GES)

II. HD 74438: a young spectroscopic quadruple uncovered in GES

III. Spectroscopic binaries in other surveys

III. Spectroscopic binaries in other surveys

III. SB2 in GALactic Archeology with Hermes (GALAH) survey

~500 000 stars V magnitude: [12-14]

Resolution: 28 000

Classical approach (CCF): 14 000 Machine learning approach t-SNE*: 13 000 *t-distributed Stochastic Neighbour Embedding

Combined techniques: 12 000 SB2

Astrophysical characterization with Bayesian inference $\rightarrow T_{\text{eff}}$, log g, [Fe/H] and R

Traven, Feltzing, Merle et al. (2020) Traven, Cotar, Merle et al. (2019)

III. Spectroscopic binaries in 4MOST

- 4-m Multi-Object Spectroscopic Telescope on VISTA/ESO
- 2400 fibres per single exposure
- 4 square degrees field of view
- Optical wavelength coverage
- Low-resolution: 4 000 8 000, 1 600 fibres, Vmax ~20
- High resolution: ~20 000, 800 fibres, Vmax ~16
- 5 y survey starting in 2024

III. Spectroscopic binaries in 4MOST

 $K \propto (M_1/P)^{1/3} \sin i / \sqrt{(1-e^2)} q/(1+q)^{2/3}$

III. SB in 4MOST: preparation of the observations

Low Resolution Galactic survey (S3) input catalogue: ~ 16×10^6 targets High Resolution Galactic survey (S4) input catalogue: ~ 8×10^6 targets

Crossmatches of the S3 and S4 input catalogues to setup the cadence of observations:

• OGLE (Soszynski+ 2016) S3: 1 800 binaries (1 400 EB + 400 ellipsoidal) S4: 290 binaries (130 EB + 170 ellipsoidal) Both: median separation 0.1 arcsec, $\Delta V = 0.04 \pm 0.3$

Survey of Surveys (SoS, Tsantaki+ 2022) (using APOGEE, GALAH, Gaia-ESO, RAVE, & LAMOST, with Gaia as a reference)
 S3, S4: 6 900, 26 700 binaries
 median separation = 0.02 arcsec

Gaia DR3 (Gaia collaboration 2022)
 S3: 26 500 binaries (median separation = 0.004 arcsec)
 S4: 99 000 binaries (median separation = 0.02 arcsec)

+ preparation of a catalogue of validation on well known SB using DEBCat (Southworth 2015), SB9 (Pourbaix+ 2004), VB+SB catalogue (Piccoti+ 2020), APOGEE DR13+DR16 (Price-Whelan+ 2020, El-Badry et al. 2018), etc.

III. SB in the Maunakea Spectroscopic Explorer (MSE)

https://mse.cfht.hawaii.edu/

Rejuvenation of the CFHT 11.25 m aperture telescope 1.5 square degree Multi-object spectroscopy (until 4 000) 3 000 < resolving power < 40 000 First light in 2026 delayed → 1 million spectra per month!

Bergemann et al. (2019arXiv190303157B) Chapter on binaries in The detail science case for MSE, edition 2019

Summary: SB in large surveys

- Detection of SB*n* using 60% of **GES** spectra, with S/N \geq 3:
 - with *n* = 1 (Merle et al., 2020),
 - with *n* = 2, 3 & 4 (Merle et al., 2017)
- Δv ≥ 2 km/s for detection of ~ 600 800 SB1
- $\Delta v \ge 25$ km/s for detection of ~500 SB2
- GES SB1 frequency ~ 10%, GES SB2 frequency ~ 2%
- SB1 frequency increases with decreasing metallicity
- Using improved masks increase the number of SB2 by 1/3 (Van der Swaelmen et al., accepted)
- A unique SB4 (HD 74438) with a 2+2 architecture whose evolution could produce multiple merger events releasing WD mass compatible with sub-Chandrasekhar SN Ia (Merle+ 2022, Nat. Astro., Merle+ 2022, The Messenger)
- Involvement in massive MOS surveys for following and characterizing SB like 4MOST ans MSE

Starry Night style HD 74438

generated with https://creator.nightcafe.studio

First characterisation: El-Badry+ (2018) on APOGEE spectra in IR (2 500 unresolved SB2)

Also feasible in the visible wavelength range of Gaia-ESO survey and HERMES spectra:

The Castor sextuplet (α Gem (2+2) + YY Gem)

Castor Aa, Ab (AIV+MV): 9.2 d, e = 0.48, a = 0.12 au SB1 Castor Ba, Bb (AIV+MV): 2.9 d, e = 0, a = 0.05 au SB1 Castor A,B: 459.1 y, e = 0.34, a = 102 au (VB) Castor Ca, Cb (MV+MV): 0.8 d, e = 0, a = 0.02 au EB+SB2 Castor AB,C: ~14.5 ky, a > 1060 au

Other SB4

Merle+ 2022, Nat. Astron.

- 1. BD-22°5866: K and M binaries with V = 10.4. The K binary is also an EB with a 2.2 d period. No spectral decomposition [6]; unknown inclinations.
- 2. V994 Her: SB4 composed of 2 pairs of eclipsing binaries: (B8V+A0V) and (A2V+A4V) with 2.1 and 1.4 d periods [7]. The outer period is 2.9 y [8].
- 3. KIC 4247791: SB4 system with two eclipsing binaries made of 4 F-type stars (F0, F2, F7, F8) with 4 d periods for each EB and V = 11.6. No spectral decomposition [9];
- KIC 7177553: SB4 system consisting of two eccentric binaries with similar periods of about 17 d where one of the two binaries is eclipsing, V = 11.3. The four components are G-type stars of similar masses [10].
- 5. EPIC 220204960: SB4 system with two interacting eclipsing binaries made of 4 M stars with periods of 13-14 d with an outer period of about 1 y, and V = 12.7 [11].
- 6. V482 Per: SB4 system (B9, A1, A7, A7) with 2 EB with 2.4 and 6 d with an outer period of 16.6 y, and V = 10.3 [12].
- 7. VW LMi: SB4 system (F-G spectral types) which is the tightest quadruple system with 2+2 hierarchy yet discovered, with 0.48, 7.93 and 355 d periods and V = 8.0 [13].
- 8. CzeV1731: SB4 system with 2 twin eclipsing binaries and an outer period estimated at 34 y [14].
- 9. TIC 454140642: a coplanar SB4 system with 2 eclipsing binaries with V = 10.4. The outer period is estimated at 432 d [15].

[6] Shkolnik, E. et al., BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary, Astrophys. J., 682, 1248-1255

[7] Lee, C.-U., et al., V994 Herculis: the multiple system with a quadruple-lined spectrum and a double eclipsing feature, Mon. Not. R. Astron. Soc., 389, 1630-1636 (2008)

[8] Zasche, P. & Uhlař, R., Updated study of the quintuple system V994 Herculis, Astron. Astrophys., 588, A121 (2016)

[9] Lehmann, H. et al., KIC 4247791: a SB4 system with two eclipsing binaries (2EBs). A quadruple system?, Astron. Astrophys., 541, A105 (2012)

[10] Lehmann, H. et al., KIC 7177553: A Quadruple System of Two Close Binaries, Astrophys. J., 819, 33 (2016)

[11] Rappaport, S. et al., EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries, *Mon. Not. R. Astron. Soc.*, **467**, 2160-2179 (2017)

[12] Torres, G. et al., The Quadruple-lined, Doubly Eclipsing System V482 Persei, Astrophys. J., 846, 115 (2017)

[13] Pribulla, T., et al., VW LMi: tightest quadruple system known. Light-time effect and possible secular changes of orbits, *Mon. Not. R. Astron. Soc.*, **390**, 798-806 (2008)

[14] Zasche, P. et al., CzeV1731: The unique doubly eclipsing quadruple system, *Astron. Astrophys.*, 642, 63 (2020)
 [15] Kostov, V. B. et al., TIC 454140642: A Compact, Coplanar, Quadruple-lined Quadruple Star System Consisting of Two Eclipsing Binaries, *Astrophys. J.*, 917, 93 (2021)

Astrophysical parameters of HD 74438

	Component	Α	В	С	D	Unresolved
	Spectral Type	A5	A9	G5	G9	-
	T _{eff} [K]	8250 ± 250	7500 ± 250	5625 ± 410	5375 ± 410	-
	<i>L</i> [L₀]	8.87 ± 1.40	5.72 ± 0.95	0.64 ± 0.51	0.48 ± 0.32	15.71 ± 1.80
	<i>R</i> [R ₀]	1.46 ± 0.15	1.42 ± 0.15	0.84 ± 0.36	0.80 ± 0.29	-
spectroscopic dynamical	$m{M}$ [M $_{\circ}$] $^{(a)}$	1.70 ± 0.06	1.54 ± 0.06	0.96 ± 0.14	0.87 ± 0.14	5.07 ± 0.22
	<i>М</i> [М _°] ^(b)	1.64 ± 0.06	1.48 ± 0.06	1.09 ± 0.04	1.06 ± 0.04	5.27 ± 0.10

Orbital parameters of HD 74438

	А-В	C-D	AB-CD
<i>P</i> [d]	20.5729 ± 0.0003	4.4243 ± 0.0001	2074.2 ± 3.5
e	0.3692 ± 0.0001	0.1535 ± 0.0003	0.458 ± 0.015
ω ₁ [rad] ^(a)	1.8780 ± 0.0003	-1.946 ± 0.002	0.185 ± 0.039
<i>T</i> ₀ - 2400000 [d]	58 605.9 ± 0.1	58 684.5 ± 0.1	59165.8 ± 5.1
<i>v</i> ₀ [km s ⁻¹]	-	-	14.5 ± 0.2
<i>K</i> ₁ [km s ⁻¹] ^(b)	45.81 ± 0.09	83.2 ± 0.1	12.8 ± 0.3
<i>K</i> ₂ [km s ⁻¹] ^(b)	50.77 ± 0.09	85.5 ± 0.1	18.5 ± 0.4
$oldsymbol{q}_{dyn}$	0.902 ± 0.002	0.973 ± 0.002	0.692 ± 0.003
$q_{ m spec}$	0.91 ± 0.05	0.91 ± 0.22	0.58 ± 0.11
<i>i</i> [°]	(52.5 or 127.5) ± 1.5	(84.0 or 96.0) ± 0.9	(73.2 or 106.8) ± 2.7 ^(c)
<i>a</i> [au]	0.215 ± 0.002	0.0681 ± 0.001	5.54 ± 0.04
Ω [°]	-	-	333° or 274°
µ" _{phot} [mas/y]	-	-	13.0

Summary of all simulations

Description	Fraction	Final outcomes	Fraction	
No interaction	0.535 ± 0.007	Quadruple	0.535 ± 0.007	
Mergers all	0.465 ± 0.007	Single	0.236 ± 0.005	3 mergers
CE	0.298 ± 0.005	Triple	0.117 ± 0.003	*
Collision	0.461 ± 0.007	Two Single	0.058 ± 0.002	
Dynamical instability	0.010 ± 0.001	Binary	0.030 ± 0.002	2 mergers 1 merger
Triple RLOF	0.363 ± 0.006	Binary+Single	0.024 ± 0.002	
Triple CE	0.360 ± 0.006			
Number of final remnants	Fraction	Triple CE outcomes	Fraction	
1	0.236 ± 0.005	Triple	0.036 ± 0.003	
2	0.088 ± 0.003	Merger(s)	0.705 ± 0.014	
3	0.141 ± 0.004	Binary+Single	0.152 ± 0.006	
4	0.535 ± 0.007	Indeterminate	0.107 ± 0.005	

Multiplicity statistics in late-type stars

Multiplicity fraction [%]

72.3	20.6	5.6	1.5	0.36	Reylé+ (2021)	10 pc sample (339 systems)
60	30	9	1	0.51	Moe & Di Stefano (2017)	25 pc solar-type sample (404 systems)
47	37	13	5	0.78	Furhmann+ (2017)	25 pc solar-type sample
54	33	8	5	0.64	Tokovinin (2014)	67 pc FG dwarf sample
54	34	9	3	0.61	Raghavan+ (2010)	25 pc solar-type sample (454 systems)
57	38	4	1	0.49	Duquennoy & Mayor (1991)	164 systems FG 22 pc
42	46	9	2	0.70	Abt & Levy (1976)	135 bright FG stars with V<5.5

Mean number of companions

Initial conditions for MSE simulations

Constraining the longitude of ascending node with Gaia astrometry

MSE simulations of the evolution of HD 74438

Monte-Carlo methods to sample 10k realizations Longitude of ascending nodes samples from flat distributions

R: LK timescales ratio for inner-to outer orbit pairs (Hamers 2017)

Architecture of hierarchical stellar systems

Periods of the inner and outer binaries

How do stellar systems form?

Molecular clouds open clusters mini-clusters associations Mobile groups Field stars & hypervelocity stars

Introduction: why do we care about stellar multiples? 2. Stellar formation

Core fragmentation at large scales (100 – 30 000 au)

Disk fragmentation at intermediate scales (0.1 – 100 au) Dynamical hardening in triple at small scales (< 0.1 au)