Home > Science Articles > Peer Reviewed Articles > Geophysical evidence for an enriched molten silicate layer above Mars’s core |
Samuel , H. ; Drilleau, M. ; Rivoldini, A. ; Xu, Z. ; Huang, Q. ; Garcia, R. F. ; Lekić, V. ; Irving, J. C. E. ; Badro, J. ; Lognonné, P. H. ; Connolly, J. A. D. ; Kawamura, T. ; Gudkova, T. ; Banerdt, W. B.
published in Nature, 622 issue 7984, pp. 712-717 (2023)
Abstract: The detection of deep reflected S waves on Mars inferred a core size of 1,830 ±40 km (ref. 1), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core–mantle boundary2. An alternative hypothesis is that Mars’s mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars’s dissipative nature at Phobos tides. The core size in this scenario is 1,650 ±20 km, implying a density of 6.5 g cm−3, 5–8{\%} larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars’s crust.
DOI: 10.1038/s41586-023-06601-8
Funding: 3PRODPLANINT/3PRODPLANINT/3PRODPLANINT
The record appears in these collections:
Royal Observatory of Belgium > Reference Systems & Planetology
Science Articles > Peer Reviewed Articles