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Abstract

The Earth’s rotation exhibits periodic variations as a result of gravitational torques ex-
erted by the Sun and the Moon and of angular momentum exchange of the solid Earth
with the Earth’s atmosphere and hydrosphere. Here we aim at determining the complemen-
tary effect of the deep interior on variations in the Length-of-Day (LOD) and focus on the
influence of topography at the core-mantle boundary (CMB). For this purpose, we have de-
veloped an analytical approach for solving the Navier-Stokes equation for global rotational
motions and inertial waves, based on and extending the approach of Wu & Wahr (1997).
An advantage of the analytical approach is that it allows to identify the frequencies and
topographic spherical harmonics degrees and orders where resonance can happen, as well
as to quantify the total amplifications in the tidal effects on LOD variations. Although the
resonances are found to be sometimes quite near tidal frequencies, we show that they are
not sufficiently close to induce significant perturbations in LOD variations, except for two
of the tides, the fortnightly and monthly tides Mf and Mm. Our results go beyond the find-
ings of Wu & Wahr (1997), extending them to a much wider range of degrees and orders
of topographic coefficients. We show that there is an amplification in Mf and Mm induced
by the degree 18-order 10 and by the degree 7-order 1 of the topography, respectively. Our
approach is generic in the sense that it can be applied to other orientation changes of the
Earth, as well as to other planets.
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Introduction – motivation
Hide (1969) showed that topography at the Core-Mantle Boundary (CMB) of the order of a cou-
ple of kilometers affects long-period Length-of-Day (LOD) variations. In his pioneering work
and in the subsequent improved studies (e.g., Hide 1989; Hide et al. 1993; Jault & Le Mouël
1989; 1990; Yoshida & Hamano 1993; 1995; Kuang & Bloxham 1993; Zatman & Bloxham
1997; 1999; Kuang & Chao 2001; Buffett 1996; Greiner-Mai et al. 2003; Mound & Buffett
2003; Asari & Wardinski 2015; Gillet et al. 2010, 2017, 2019, 2022a, 2022b; Teed et al. 2018;
Gerick et al. 2020), the focus is on the pressure torque at the CMB from core flow at long
timescale (secular variations and long-term motions related to the magnetic field) in order to
compute the core contribution to LOD variations at decadal timescale. At those long timescales,
the Coriolis and pressure forces are dominant inside the fluid core, with the magnetic (Lorentz)
and buoyancy forces completing the balance of forces (the so-called MAC balance, Aubert &
Gillet 2021). On shorter annual and (sub)seasonal timescales considered here, inertia is thought
to dominate over the buoyancy and Lorentz forces. The most important core modes for LOD
are then the inertial modes, for which Coriolis plays the role of a restoring force (for a review
of these oscillations, see Triana et al. 2022).

In the present paper, we study tidal effects on short timescale (seasonal, months, days).
Observations of LOD variations as provided by GNSS (Global Navigation Satellite System)
and/or VLBI (Very Long Baseline Interferometry) and corrected for the atmospheric, oceanic
and possibly hydrological effects show unexplained residuals at the level of ten to a few tens
of microseconds for periods corresponding to the tidal periods around two weeks or one month
(see, e.g., Kouba and Vondrák 2005; Böhm et al. 2010; Senior et al. 2010; Ray et al. 2013;
Rebischung et al., 2016; Watkins et al. 2018; Landskron and Böhm 2019). This questions the
accuracy of the tidal corrections in LOD and provides a motivation for our work. Analyses of
the present-day data of LOD variations at short timescale often concentrate on effects from the
surface geophysical fluids (e.g., Chen 2005; Zhou et al. 2006; Jin et al. 2011; Marcus et al.
2012; Lambert et al. 2017; Dill & Dobslaw 2019; Chen et al. 2019), as these explain the most
important part of the seasonal changes in LOD. Here we study the possible effects of the core.
We assess the importance of inertial waves inside the core for LOD variations and quantify the
effects of the associated core flows in the presence of a CMB topography on the total pressure
torque at the CMB in the frame of tidal effects on LOD. We will examine whether topography
at the CMB may explain the observed residuals.
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Tidal effects are computed by evaluating the Earth’s deformations (including global rotational
deformations) in response to a gravitational tidal potential. In this procedure, the Earth is usually
considered, at initial state, as an ellipsoid in hydrostatic equilibrium. In such a biaxial ellipsoid,
zonal flows associated with the Earth’s rotation variations are not affecting the Earth’s tidal
response if the core is assumed to be inviscid. The Poincaré flow, which is to lowest-order
approximation a rotation around an axis in the equator, does not play any direct role in LOD
variations. CMB topography changes this situation by creating a non-zero pressure torque in the
polar direction at the CMB and transfer of angular momentum between core and mantle. The
torque depends on the inertial modes in the core, which can cause resonance effects in LOD.
Given that the topography at the CMB can be developed in spherical harmonics (SH) truncated
at a certain degree (corresponding to the smallest wavelength), we will derive an expression of
the torque at the CMB that involves the coefficients of the development of the topography in
SH. The effect on LOD will be shown to also depend on the amplitudes of the topographical
SH and on the presence of resonances with inertial modes in the liquid core.

The philosophy of our computation follows Wu & Wahr (1997), who computed the effects of
the topography on LOD and nutations. For CMB topography developed up to degree 6, they
showed that this effect can be significant and can be of the level of 1 mas on the annual ret-
rograde nutation, which is more than 12% of the total nonrigid contribution of 8 mas. This
value corresponds to the difference between the observed retrograde annual nutation amplitude,
33 mas (Herring et al. 2002), and the value computed for a rigid Earth, 25 mas. When con-
sidering a flattened Earth in hydrostatic equilibrium, this nutation amplitude takes the value
of 31.1 mas (adding 6.1 mas to the rigid Earth value) (Wahr 1981). Mathews et al. (1991a,
1991b, 2002) could explain the residual 1.9 mas considering a non-hydrostatic flattening for the
core and electromagnetic coupling. A topography effect at the level of 1 mas would be more
than half of these effects, while the hydrostatic/non-hydrostatic effect is at the first order and the
topography at the second order in the small quantities such as the normalized topography ampli-
tudes. This large 1 mas topography effect found by Wu & Wahr (1997) is difficult to reconcile
with the observations, unless the topography amplitudes are much smaller than the values at the
level of 3.5 km that Wu & Wahr (1997) used. The topography contributions to the other nutation
amplitudes were not computed in the paper of Wu & Wahr (1997). These are additional reasons
for revisiting the CMB topography contribution to Earth rotation and orientation changes.

In view of the uncertainties in the CMB topography coefficients and to facilitate the phys-
ical interpretation of the complex mathematical developments, we establish a theory that is
completely analytical. The method consists in separating the Navier-Stokes equation into two
equations whose solutions for the fluid motions can be computed analytically. This separation
is performed so that one part describes the most important classical global rotational motions
and the other part the smaller additional inertial motions. Both parts of the velocity field are
assumed to be incompressible flows. The no-penetration boundary conditions imposed at the
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CMB yield a relation involving the additional velocity field and the CMB topography. This
allows to solve for the coefficients appearing in the expression of the additional velocity field
in terms of the topography coefficients and to estimate resonance effects for the frequencies
involved in the tidal forcing.

The paper is structured as follows. In Section 1 on the mathematical model, we first recall
the Liouville equations for the global rotation and their solutions (Sub-section 1.1). We then
describe the way to obtain the topographic coupling for tidal LOD variations (Sub-section 1.2).
Sub-section 1.3 deals with the analytical solutions of the equations for both the global rotation
part and the incremental part of the velocity field related to the inertial waves. We detail the
solutions for the incremental velocity and provide the expressions for the topography used in the
equations. In Section 2, we further develop and solve the equations of the topographic coupling
for a two-layered Earth model and we come up with a new transfer function for tidal changes in
LOD. Section 3 provides the concluding remarks.

1 Mathematical model

1.1 Equations of motion in the frame of rotational dynamics
Since we want to assess the effect of topographical coupling at the CMB on LOD variations,
we can safely neglect Earth’s solid inner core in our study. The Liouville equations governing
the rotation of the two-layer Earth model can be written as (Sasao et al. 1980):

∂L

∂t
+ Ω× L = Γ, (1)

∂Lf

∂t
− ωf × Lf = Γcmb, (2)

where Ω is the rotation vector of the solid mantle, and ωf the differential rotation vector of the
liquid core with respect to the mantle. The rotation vector of the core can thus be written as
Ω+ωf . L and Lf denote the angular momentum of the whole Earth and liquid core, respectively.
The quantity, Γ represents the torque exerted on the planet by external sources (primarily the
Sun and Moon). Γcmb is crucial to the present study. It represents the part of the torque caused
by the mantle on the liquid core that comes in addition to the external gravitational torque acting
on the liquid core and the torque caused by the fluid pressure on an hydrostatic oblate mantle
(see again Sasao et al. 1980, and Dehant & Mathews 2015, see also Rekier el al. 2020). This
torque includes the electromagnetic torque and the drag on the viscous torque, but we don’t
consider those contributions here and keep only the pressure torque related to the topography
of the CMB in order to be able to evaluate its effect independently from the other physical
mechanisms.
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Following the standard procedure we choose the mean axis of rotation as our polar z-axis, and
write the deviations of the Earth and liquid core from steady rotation as:

Ω = Ω0(ẑ + m), (3)
ωf = Ω0mf , (4)

where m and mf are small dimensionless quantities and Ω0 the mean mantle angular velocity of
rotation. To first order in the small quantities, the components of the Liouville equations along
the rotation axis decouple from those in the equatorial directions. For a single component of
the external torque with frequency ωtidal = σmΩ0, as measured in the inertial frame, the third,
or polar, components of Eqs. (1) and (2) (Dehant & Mathews 2015) write:

m3 +
c33

C
+
Cf
C

mf,3 = − iΓ3

CσmΩ2
0

, (5)

m3 + mf,3 +
cf,33

Cf
= − iΓcmb,3

CfσmΩ2
0

, (6)

where C and Cf denote the polar moments of inertia of the Earth and its liquid core, respec-
tively, and c33 and cf,33 are the increments in these quantities caused by tidal deformations at the
frequency considered usually computed using the Love number formalism. Subscripts 3 refer
to the polar z component.

The incremental rotation parameter m3 is related to the change in the Length-of-Day, ∆LOD,
by

∆LOD

LOD
= −m3. (7)

In the absence of topographic coupling at the CMB (Γcmb,3 = 0), Eqs. (5) and (6) can be readily
solved, giving:

m0
3 = −cm,33

Cm
− iΓ3

CmσmΩ2
0

, (8)

m0
f,3 = −cf,33

Cf
−m0

3, (9)

where Cm = C−Cf and cm,33 = c33−cf,33 are the mantle moment of inertial and its increment
also computed using the Love number formalism. Wu & Wahr (1997) showed that this solution
is sufficient to evaluate the topographic torque at the CMB, Γcmb,3 and that the Earth’s rotational
response can be calculated as:

m3 = m0
3 +

iΓcmb,3

CmσmΩ2
0

. (10)

Wu & Wahr further showed that Γcmb,3 exhibits resonances at some particular frequencies,
which according to Eqs. (7) and (10), also manifest themselves in ∆LOD. We review this
procedure in the remainder of this section.

5



Note that the deformation effects related to the incremental flux due to the existence of a to-
pography are smaller than those related to the main core flow and partly accounted for by
considering the induced readjustment of the flow and the associated changes in the moments of
inertia through the use of Love numbers specifying the elastic response of the Earth to a unit
tidal forcing. The additional cm,33 and cf,33 can therefore be neglected in the lowest order of
approximation.

1.2 CMB topography and topographic torque
In seismology, it is common practice to parametrize the CMB surface radius as follows:

rCMB = R

[
1 +

N∑
n=1

n∑
m=0

(εmc n cosmλ+ εms n sinmλ)Pm
n (cos θ)

]
, (11)

where R is the mean radius of the core, θ and λ are the colatitude and longitude, respectively,
and Pm

n (cos θ) denotes the associated Legendre polynomials of (integer) degree n and order m.
In the above parametrization, εmc n and εms n are real valued parameters. For our purpose, we find
it more convenient to use instead:

rCMB = R

[
1 + (ε0

2)hydrostat.P
0
2 (cos θ) +

{
N∑
n=1

m=n∑
m=−n

εmn Y
m
n (θ, λ)

}]
(12)

where εmn now are the complex coefficients of the spherical harmonics Y m
n (θ, λ) of order n and

degree m. These spherical harmonics are based on the associated Legendre polynomials Pm
n

by:

Y m
n (θ, λ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
· Pm

n (cosθ)eimλ,m ≥ 0 (13)

and Y −mn (θ, λ) = (−1)m(Y −mn )∗(θ, λ) with (Y −mn )∗ the complex conjugate of Y m
n . Note that

the constant term multiplying Pm
n insures orthonormality of Y m

n .
The expression of εmn in terms of εmc,n and εms,n are given in Appendix B. In writing Eq. (11),
we have explicitly isolated the part of ε0

2 attributed to the hydrostatic deformation of the CMB
surface, so that the set of remaining coefficients {εmn } relates to the non-hydrostatic deformation
only.
If we can find a way to compute the pressure inside the fluid core, we may then use the topog-
raphy expression (12) to compute the pressure torque on the non-hydrostatic part of the CMB
topography, which must be equal and opposite in sign to the torque caused by the mantle on the
liquid core, by virtue of Newton’s third law:

Γcmb = Γpressure − Γhydrostat.
pressure

= −
∮

cmb

P (r× n̂) dS +

∮
hydrostat.

P (r× n̂0) dS, (14)
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where the first integral runs over the bumpy CMB topography with normal vector n̂ and the
second integral runs over the hydrostatic oblate ellipsoid with normal vector n̂0. In the next
subsection, we explain how to evaluate the pressure by computing the dynamics of the flow
inside the liquid core.

1.3 Flow inside the core
In the frame rotating at angular velocity Ω relative to the inertial frame, the inviscid flow inside
the liquid core is governed by the momentum equation

∂V

∂t
+ (V · ∇)V + 2Ω×V +

∂Ω

∂t
× r + Ω× (Ω× r) = −1

ρ
∇P +∇φe, (15)

where ρ denotes the core density here taken as homogeneous, P is the fluid pressure, and φe
denotes the exterior potential acting on the fluid. The vector field V denotes the velocity of the
flow relative to the mantle. It can be safely treated as small compared to the uniform rotation
at angular velocity Ω0. For this reason we can neglect the second term of Eq. (15). This makes
the remaining equation linear in the velocity, so that the flow response to tidal forcing can be
analysed independently for each individual frequency. The flow velocity must satisfy the no-
penetration condition at the CMB:

n̂ ·V|cmb = 0. (16)

Wu & Wahr (1997) had the idea to separate the velocity field, V, in two parts:

V = v + u, (17)

where the vector field u is treated as a small perturbation produced on the base flow, v, by
the non-hydrostatic CMB topography. Both fields must satisfy the incompressibility condition:
∇ · v = ∇ · u = 0. By using Eq. (3), the momentum Eq. (15), can then be split into two parts:

∂v

∂t
+ 2Ω0ẑ× v + Ω0

∂m

∂t
× r−∇φm = ∇χ, (18)

∂u

∂t
+ 2Ω0ẑ× u +∇p = −∇χ, (19)

where we have introduced the reduced pressure p and the centrifugal potential φm, respectively
defined as:

p =
P

ρ
− φe, (20)

φm = −1

2
|Ω× r|2 +

1

2
Ω2

0|ẑ× r|2, (21)

where the second term of Eq. (21) is the centrifugal potential at equilibrium.
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The scalar function, χ, appearing in both Eqs. (18) and (19), cannot be uniquely determined so
that the decomposition of Eq. (15) is not unique. It is convenient to consider this decomposition
so that the first part represents the flow motion without CMB topography. For LOD variations,
we follow Wu & Wahr who have simply chosen χ = 0, which indeed corresponds to the main
tidal flow when ignoring the CMB topography. Equation (18) may then be solved immediately
for the base flow, v, within the hydrostatic fluid core, once we know the axial component of m,
which is here given by Eq. (8), giving:

v = Ω0m0
f,3ẑ× r, (22)

where m0
f,3 should be read from Eq. (9). Neglecting the tidal deformation of the core, this

solution simply reduces to v = −Ω0m0
f,3ẑ × r, which is the solution of the spin-up problem

when there is no coupling at the CMB (Greenspan, 1969).

The whole point of using the decomposition Eq. (17), lies in the form of the dynamical Eq. (19)
for the perturbation, u. Focusing on the flow response to a given tidal frequency, ωtidal = σmΩ0,
we may write u = ũeiσmΩ0t, and p = p̃eiσmΩ0t. Equation (19), may then be rewritten as:

ũ =
−iσm

4− σ2
m

(
∇p̃− 2

iσm
ẑ×∇p̃− 4

σ2
m

(ẑ · ∇p̃)ẑ
)

1

Ω0

. (23)

Taking the divergence on both sides and using∇.u = 0, we find:

∇2p̃− 4

σ2
m

(ẑ · ∇)2p̃ = 0. (24)

This is the Poincaré equation governing the dynamics of inertial waves. Analytical solutions
to this equation can be written explicitly in terms of specially tailored bi-spheroidal coordinates
for both the spherical and oblate spheroidal fluid core (Greenspan 1969; see also Rieutord 2014;
Zhang & Liao 2017; and Eq. (A13) of Rekier et al. 2019). For our purpose, we only need the
general solution on the sphere located at the mean CMB radius, R, where it can be written as a
spherical harmonics expansion (Wu & Wahr 1997):

p̃|r=R =
∞∑
`=1

∑̀
m=−`

am` Pm
`

(σm
2

)
Y m
` (θ, λ). (25)

The above (combined with Eq. (20)) can be used into Eq. (14) to compute the pressure torque
at the CMB. In the axial direction, this reads:

Γcmb,3 = −iΩ2
0R

5

`max∑
`=1

∑̀
m=−`

(−1)mmPm
`

(σm
2

)
ε−m` am` . (26)
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The last step is to compute the values of the complex coefficients am` . This is done by insert-
ing Eq. (25) back into Eq. (23) and using the boundary condition Eq. (16) which, upon using
Eqs. (17) and (22), reduces to:

n̂ ·
(
ũ + Ω0m0

f,3ẑ× r
)
|r=R = 0. (27)

After some algebra (see also Appendix A, Section B), one finds:

am` = −2

(
1− σ2

m

4

)
[. . . ]m`

m εm` m0
f,3, (28)

a−m` = 2

(
1− σ2

m

4

)
[. . . ]−m`

(−1)mm εm`
∗ m0

f,3, (29)

where m > 0, and we have introduced the following shorthand in the denominator:

[...]m` =

[
mPm

`

(σm
2

)
−
(

1− σ2
m

4

)
Pm
`
′
(σm

2

)]
. (30)

where ′ denotes the derivative and where−l ≤ m ≤ l. The values of σm for which this quantity
appearing in the denominator of Eqs. (28) and (29) is zero, correspond to the frequencies of the
inertial modes of the rotating fluid sphere (Greenspan, 1969). The above derivation shows that
those modes can resonantly amplify the tidal variations in the LOD. We quantify this mechanism
in the next section.
When actually computing ∆LOD based on Eq. (7), it is useful to relate observations of ∆LOD
at frequency σm to a reference chosen at a well-known frequency, e.g. the lunar fortnightly
frequency of the tide Mf (period 13.66 days), far away from any resonance using:

m0
3(σm) = m0

3(σMf
)
φext(σm)

φext(σMf
)
, (31)

where φext is the external tidal potential at a given frequency. Combining all the above, one has:

∆LOD(σm) =

(
1−

`max∑
`=1

∑̀
m=−`

m2 Pm
`

(σm
2

) 2

[...]m` Ω2
0Cm

εm` εm∗`

)
φext(σm)

φext(σMf
)

∆LOD(σMf
)

(32)

2 Resonant amplification in tidal variation of LOD from to-
pography

In order to estimate the amplitude of the resonance in the tidal ∆LOD, we need a model of the
CMB topography. We use the topographic coefficients as measured by seismologists (Simmons
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et al. 2009; Sze & van der Hilst 2003; Boschi & Dziewonski 2000; and Morelli & Dziewon-
ski 1987). These models are restricted to long wavelength topography. CMB topography is
thought to be primarily due to isostatic compensation of long-wavelength density anomalies in
the lowermost mantle (see e.g. Dehant et al. (2022) for a review). At this time, there is no
convergence towards a global model of the bottom mantle anomalies to derive a topographic
map of the CMB unambiguously. Although the topography models mostly show elevated to-
pographies under the Pacific and Africa, implying a rather large degree 2-order 2 topography
coefficient, details differ between models. So we decided not to use those dynamical models
and to use the seismological models. The data are for the real εmc n and εms n and are restricted to
low degrees.

In order to test our analytical approach adequately, we want to use topographic coefficients of
higher orders and degrees. We calculate these coefficients by using Kaula’s rule (Kaula 1966),
which predicts that gravity coefficients are inversely proportional to the square of the degree n.
When applied to the CMB topography, this predicts εmn ∼ n−2. This choice is consistent with
the current knowledge relating topography and gravity coefficients (see, e.g., Chao & Rubincam
1989 and Ermakov et al. 2018) since the CMB is an equipotential surface.

We look for resonance frequencies that can be close to tidal frequencies corresponding to long-
period tides. In practice, we search for the solutions of the equation [...]mn = 0 that lie in the
frequency band [−0.5, 0.5] cycle/day. These solutions refer to all periods larger than 2 days. The
spectrum is divided in frequency bands with central periods near the tidal periods at 9.1, 9.18,
9.54, 9.61, 13.61, 13.66, 13.81, 14.19, 14.77, 26.88, 27.55, or 182.62 days. These resonances
would amplify the total third component of the torque leading to enhanced LOD variations.

Fig. 1 shows the resonant behaviour of the total torque as a function of frequency. In Table 1, we
identify those resonance periods near tidal periods and we provide the amplification in ∆LOD.
We do so by means of Eq. (32). The amplification is proportional to the square of the associated
topography εmn and the amplification factor can be several orders of magnitude larger than 1.
For example, the ∆LOD associated with the tide at 27.6668 days, quite close to a resonance, is
amplified by 5963.3(ε1

7)2.

As seen from the last column of Table 1, there is a large range of amplification factors in
front of the normalized topography coefficients. The maximum amplification factor is for the
tide at 13.6333 days near the Mf tide with an amplification at the level of 15569(ε10

18)2. Since
ε10

18, according to the Kaula rule is small, of the order of 5 10−3, the amplification is 0.06 ms.
Considering that the LOD variation at the tidal period of 13.6333 days (see Chapter 8 of IERS
Standard) is 0.15 ms (millisecond), as theoretically computed from Defraigne and Smith (1999),
the total amplitude could therefore increase to 0.21 ms and the observed residuals (between 0.02
and 0.11 ms) could be explained (Kouba and Vondrák 2005; Vondrák and Ron, 2005; Shen and
Peng 2016; Dill et al. 2019).
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(a)

(b) (c)

(d) (e)

Figure 1: Resonances in the total torque (a); Zoom into the total torque around 9.61 days (b),
13.66 days (Mf tide) (c), 14.77 days (d) and 27 days (Mm tide) (e), which includes the largest
resonantly affected tides. 11



Table 1: Possible amplifications in tidal LOD variations

Central period (degree n, order m) Resonance period Tidal period Amplification
(days) (days) (days) (normalized on Mf )

9.61 (6,2) 9.8241 9.8736 2.4 ·(ε2
6)2

13.81 (9,3) 13.9857 13.7773 51.6·(ε3
9)2

14.77 (5,1) 14.6651 14.6981 2.6·(ε1
5)2

14.6664 10.5·(ε1
5)2

27.55 (Mm) (7,1) 27.6658 27.5545 816.5·(ε1
7)2

27.6668 5963.3·(ε1
7)2

13.66 (Mf ) (18,10) 13.6136 13.6333 15568.8·(ε10
18)2

14.77 (15,7) 14.7384 14.7653 1923.3·(ε7
15)2

182.62 (SSa) (19,1) 189.6665 189.6211 75.7·(ε7
19)2

The lowest degree topography that can induce a resonance in the tidal effects on LOD is degree
5. The amplification for the tide at 14.6664 days is only a factor of 10.5(ε1

5)2. The LOD variation
associated with that tide is very small.

There is a resonance frequency very near the Mm tide at 27.666 days, that influences the tides
at 27.55 days as well as at 27.667 days. The amplifications are respectively 817(ε1

7)2 and
5963(ε1

7)2. As ε1
7 can be of the order of 0.02, the tide at 27.55 days can be amplified 2.4 times

and the associated LOD variations would be of the order of 0.03 ms, depending on the effective
value of ε1

7. Similarly the tide at 27.67 days can be amplified 0.3 times and the associated LOD
variations would be of the order of 0.06 ms. This amplification is similar to the one of the Mf

tide. Both contributions around 27.7 days combined would provide a spectral amplitude that is
a little bit too high compared to the observation residuals ranging from 0.02 to 0.03 ms.

3 Discussion
The focus of the current research is on quantifying the response of the Earth’s rotation to tidal
forcing when considering a topography at the CMB. In order to achieve this goal, we have
developed an analytical approach for solving the Navier-Stokes equation for global rotational
motions plus inertial waves, based on and extending the approach of Wu & Wahr (1997). From
their numerical solution for a topography up to degree 6, they concluded that the effect of a
topographic torque on the LOD variation is very small. We have revisited the computations
and considered a completely analytical method. The advantage of our analytical method is
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that it allows us to directly identify the frequencies and topographic degrees and orders where
resonances can happen. At these frequencies, the LOD variations can be amplified as seen from
Fig. 1.

We extended the computation of the topographic torque to higher degrees and orders than 6
(the maximum used in Wu & Wahr (1997)). Since many of the topographic coefficients are
not observed at the CMB, we have assumed that they follow the Kaula rule, similar to that of
the gravity field. We have estimated the coefficients of such a law using the observed values
of the CMB coefficients at low degrees and orders and used these coefficients to extrapolate
to higher orders and degrees. This provided us with an order of magnitude of what we can
expect. We have computed the resonances for these degrees and orders, as well as the maximum
amplifications near the tidal frequencies given by the tide generating potential.

From our analysis, we have shown that the conclusion in Wu & Wahr (1997) on very small
LOD contributions due to the effects of topography still holds when considering higher degrees
and orders. However, Wu & Wahr (1997) have small contributions at the microsecond level
in the tidal effects on LOD considered (see their Table 6). We have demonstrated that the
tide at 13.63 days near Mf and the tide at 27.56 days near Mm can both be amplified by 0.06
ms based on a mean topography. Observations from VLBI and GNSS combined show some
residuals ranging from 0.02 to 0.11 ms near the 13.63 day tide and from 0.02 to 0.03 ms near
the 27.7 day tide (Kouba and Vondrák 2005; Vondrák and Ron, 2005; Shen and Peng 2016; Dill
et al. 2019). It is tempting to suggest that topographic coupling might explain these residuals,
although the IERS Earth rotation parameters around the semi-diurnal and diurnal periods are
not perfectly corrected for the ocean tides. Errors in the determination of the tiny semi-diurnal
constituents OP2 and λ2 could be aliased into Mf and Mm, respectively (Woodworth & Hibbert
2018).

Our analysis concentrated on the topographic coupling at the CMB and did not consider other
CMB coupling mechanisms and the presence of an inner core. Zhang (1992) and Zhang & Liao
(2017) showed that inertial waves (appearing in our computation) with a small azimuthal wave
number are only weakly modified by an inner core (see also Triana et al. 2022). Since the
largest effects are associated with small azimuthal wave number, we expect the inner core to
have a negligible effect on our results. The introduction of neglected additional CMB couplings
into Liouville Eq. (2) would only slightly change the amplitude of the unperturbed wobble, m0

3,
to leading order in the CMB flattening. Nevertheless, even though the electromagnetic force is
dominated by inertia at the timescales considered, its presence can slightly alter the frequency
of inertial modes in the core, possibly pushing them into or away from resonance (Luo and
Jackson, 2022; Luo et al. 2022). Moreover, introducing viscous and ohmic dissipation into the
model causes inertial modes to become damped, which can slightly reduce the amplification.
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Appendices
A Coefficients akl of the torque

Expressions for the akl coefficients of the torque can be obtained by applying the boundary
condition Eq. (16) to u and v. We take u from Eq. (19) with Φ provided by Eq. (20). We also
take v from Eq. (22). The resulting expression corresponds to the expression (B4)−(B12) = 0
in the appendix of Wu & Wahr (1997) and is of the form:

∑
l,k

Y k
l
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Eq. (33) allows us to obtain analytical expressions for the coefficients akl as a function of εmn at
each frequency of interest. We first multiply Eq. (33) by the complex conjugate of the spherical
harmonics Y m

n , integrate over 2π and apply the orthonormality condition. We then obtain a
much easier form of Eq. (33) relating amn linearly with εmn for each n and m:[
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Using Eq. (48), we also have[
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For writing simplicity, we express the terms in brackets in Eqs. (34) and (35) as:
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as already mentioned in Eq. (30) and (for positive k)
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]
. (37)

While combining negative and positive orders of the spherical harmonics for the εmn provides
a real topography, it must be noted that the combination of amn and a−mn is not real due to the
(−m) coefficients appearing in Eq. (35). Therefore, Φ is a complex-valued for m 6= 0.
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The case when m = 0 in Eq. (34) can be treated separately. The right-hand side of Eq. (34)
and Eq. (35) is equal to zero and the coefficient amn do not depend on the topographic ampli-
tude. Indeed, this makes sense since with a zonal topography it is impossible to induce a zonal
velocity.
The system of equations (34) and (35) is undetermined when [...]mn is equal to zero. This ex-
presses an eigenvalue equation for σm and determines the condition for resonances to happen.
In this case, it is impossible to determine amn but we can determine the resonance frequencies,
which do not depend on the topographic amplitudes.
Using Eq. (34) and Eq. (35), we can straight forwardly express a±mn in terms of the topographic
coefficients ε±mn :

amn =
2
(

1− σ2
m

4

)
[...]mn

m εmn m3 (38)

and for the negative case:

a−mn =
2
(

1− σ2
m

4

)
[...]−mn

(−m)(−1)mεm∗n m3 (39)

Eqs. (38) and (39) show resonance effects when the denominators are equal to zero. The fre-
quencies corresponding to [...]±kl = 0 given by Eqs. (36) and (37) are the inertial mode frequen-
cies.
Besides depending linearly on εmn , the coefficients amn are also proportional to m3 (or to m0

3 to
first order in the small quantities such as m0

3, m3).

B Expression of the topography at the Core-Mantle Bound-
ary

Since rotation flattens the Earth, the coefficient ε0
c 2 contains a hydrostatic part next to a non-

hydrostatic contribution to the topography:

ε0
c 2 = ε0

c 2 hydr. part + ε0
c 2 non−hydr. part. (40)

The additional topography at the CMB with respect to the flattened core can thus be separated
from the hydrostatic part as

rCMB = R

[
1 + ε0

c 2 hydr. partP
0
2 (θ)

+
N∑
n=1

m=n∑
m=−n

(εmc n cosmλ+ εms n sinmλ)Pm
n (θ)

]
(41)
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where εmc n represent henceforth the non-hydrostatic contributions to the topography.
Note that for simplicity we have kept the same notation for ε0

c 2.
The topographical coefficients and the spherical harmonics (as given by Eq (13)) can be related
through a series of properties:

<(εmn ) =

√
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2
εmc n (42)

<(ε−mn ) =
(−1)m
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2
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=(εmn ) =
−
√

2π

2
εms n (44)

=(ε−mn ) =
(−1)m

√
2π

2
εms n (45)

εmn =

√
2π

2
(εmc n − iεms n) (46)
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√
2π

2
(εmc n + iεms n). (47)

where < and = are the real and imaginary part of a complex number, respectively.
In addition, since

ε−mn = (−1)mεm∗n , (48)

we have
ε−mn Y −mn (θ, λ) = εm∗n Y m∗

n (θ, λ) (49)

and rCMB given by Eq. (12) is real.

C Kaula rule for the topography coefficients
In order to construct the topography coefficients, we proceed in several steps.
First of all, we brought the 4 sources of CMB topography to a common ground by scaling by
the CMB mean radius. Fig. 2 depicts the coefficients obtained after this operation.
Furthermore, we have computed an average for the different cosine and sine coefficients for each
given degree as provided by four sources (Boschi & Dziewonski 2000; Morelli & Dziewonski
1987; Simmons et al. 2009; Sze & van der Hilst 2003). We interpolate the obtained values to
get as and ac in Kaula’s law. This states that that gravity coefficients are inversely proportional
to the square of the degree n. By the same token, we consider that the approximation of the
amplitude coefficients of the topography follows a function of the type x→ a

x2
(Kaula 1966).

Consequently, we can extrapolate and obtain topography coefficients for any degree or order.
See Fig. 3 for the coefficients thus obtained.
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Figure 2: Topographic coefficients averaged over the orders and showing a decreasing law as a
function of their degrees in their SH expansions.

Figure 3: Topographic coefficient fitting according to Kaula’s law. The dots are the mean of all
orders as well as of all observation data sets.
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