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Scope:

* Dynamo models indicate that a stably stratified layer overlying the convective liquid core is needed to explain the
observed magnetic field

* Thermal evolution studies show that a a sub-adiabatic heat flow at the core-mantle boundary can occur during a
significant fraction of Mercury’s history

* The likely long-lived Mercury dynamo and the presence of a stable layer place important constraints on the

interior structure and evolution of the core and planet.

This study:

* Couple mantle and core thermal evolution to investigate the necessary conditions for a long-lived and present-
day dynamo inside Mercury's core by taking into account an evolving stable layer overlying the convecting outer

core

1-D mantle model (Thiriet et al. 2019) coupled to core thermal evolution model (Greenwood 2021) that takes into

account the formation of a stably stratified layer in the core

parameters governing scaling laws in 1-D mantle models are calibrated to match results of 2-D dynamic evolution

models (core-mantle boundary and surface heat flow, mantle temperature profile, cessation of convection)

Constraints on Mercury’s core

¢ reducing formation conditions require that the core is mostly Fe-Ni-Si with a smaller fraction of S or C (e.g. Namur
2016, Steenstra 2020)

* geodesy data (moment of inertia, libration amplitude at 88d, tidal Love number k2) imply a core radius

2000£50km (e.g. Rivoldini 2019, Knibbe 2020, Steinbriigge 2020)

* Mercury models that agree with geodesy data require
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an inner core radius 0-1500km if the core is an Fe-S alloy
and 1300-2010km if the core is an Fe-Si alloy

* Mercury models that agree with geodesy data without an

inner core are possible but difficult to reconcile with
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the past and present core generated dynamo

Core thermodynamic and transport properties:
* Fe-S-Si core (Terasaki et al 2019, Edmund et al. 2022)

New core liquidus (e.g. Rivoldini et al. 2011, Edmund et al. 2022)

equipartition of Si between liquid and solid Fe and not partitioning of S in solid Fe

Fe-Si inner core (fcc or bee)
Fe-S-Si thermal conductivity Wagle et al 2019)

2800 < — Fe-s
) — Fe-si
2600 -

2400

300
2200f -- 40 GPa

Tomperature (K]
Latent heat (k]

10r — 56Pa
-+ 40GPa

62 4 6 B 1 L R R o2 4 e s 1 [ I R B R
Fraction o ight element [wt%;

Fracton oflght elemen %] Fraction ofght element (wi%] Fracton of ight element (w1%]

Thermal evolution of the core (core radius 2000km)

 inner core grows faster for Fe-Si case because of higher
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.
Coupled evolution: Summary:

¢ the cessation of mantle convection increases the heat flow at the core-mantle boundary

decreases the thickness of the stable layer

and increases ohmic dissipation in the core
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* asmall fraction of S (or C) is required to have an inner core larger than 1000km and a long lived dynamo

* a 2.5wt%S+4wt%Si model produces a present-day inner core of ~1200km, a ~300km thermal boundary layer,
and generates sufficient ohmic dissipation to drive a past and present dynamo

* preliminary results show that the cessation of mantle convection decreases the thickness of the thermally stratified
layer and increases ohmic dissipation

* preliminary result show that iron-rich snow does not occur in Fe-S-Si cores if S=3w%
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