000006162 001__ 6162
000006162 005__ 20230123212739.0
000006162 0247_ $$2DOI$$a10.1051/0004-6361/202244677
000006162 037__ $$aSCART-2023-0087
000006162 100__ $$aSana, H.
000006162 245__ $$aThe VLT-FLAMES Tarantula Survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus
000006162 260__ $$c2022
000006162 520__ $$aContext. The origin of massive runaway stars is an important unsolved problem in astrophysics. Two main scenarios have been proposed, namely: dynamical ejection or release from a binary at the first core collapse. However, their relative contribution remains heavily debated.  Aims: Taking advantage of two large spectroscopic campaigns towards massive stars in 30 Doradus, we aim to provide observational constraints on the properties of the O-type runaway population in the most massive active star-forming region in the Local Group.  Methods: We used radial velocity measurements of the O-type star populations in 30 Doradus obtained by the VLT-FLAMES Tarantula Survey and the Tarantula Massive Binary Monitoring to identify single and binary O-type runaways. Here, we discuss the rotational properties of the detected runaways and qualitatively compare the observations with expectations of ejection scenarios.  Results: We identified 23 single and one binary O-type runaway objects, most of them located outside the main star-forming regions in 30 Doradus. We find an overabundance of rapid rotators (ve sin i > 200 km s−1) among the runaway population, thus providing an explanation for the observed overabundance of rapidly rotating stars in the 30 Doradus field. Considerations of the projected rotation rates and runaway line-of-sight velocities reveal a conspicuous absence of rapidly rotating (ve sin i > 210 km s−1), fast-moving (vlos > 60 km s−1) runaway stars in our sample, strongly suggesting the presence of two different populations of runaway stars: a population of rapidly spinning but slowly moving runaway stars and a population of fast-moving but slowly rotating ones. These are detected with a ratio close to 2:1 in our sample.  Conclusions: We argue that slowly moving but rapidly spinning runaway stars result from binary ejections, while rapidly moving but slowly spinning runaways could result from dynamical ejections. Given that detection biases will more strongly impact the slow-moving runaway population, our results suggest that the binary evolution scenario dominates the current massive runaway star population in 30 Doradus.
000006162 594__ $$aNO
000006162 6531_ $$astars: early-type
000006162 6531_ $$astars: massive
000006162 6531_ $$abinaries: spectroscopic
000006162 6531_ $$astars: rotation
000006162 6531_ $$astars: kinematics and dynamics
000006162 6531_ $$agalaxies: star clusters: individual: 30 Dor
000006162 6531_ $$aAstrophysics - Solar and Stellar Astrophysics
000006162 6531_ $$aAstrophysics - Astrophysics of Galaxies
000006162 700__ $$aRamírez-Agudelo, O. H. 
000006162 700__ $$aHénault-Brunet, V. 
000006162 700__ $$aMahy, L.  
000006162 700__ $$aAlmeida, L. A.  
000006162 700__ $$ade Koter, A. 
000006162 700__ $$aBestenlehner, J. M.  
000006162 700__ $$aEvans, C. J. 
000006162 700__ $$aLanger, N. 
000006162 700__ $$aSchneider, F. R. N. 
000006162 700__ $$aCrowther, P. A. 
000006162 700__ $$ade Mink, S. E.
000006162 700__ $$aHerrero, A. 
000006162 700__ $$aLennon, D. J. 
000006162 700__ $$aGieles, M.
000006162 700__ $$aMaíz Apellániz, J. 
000006162 700__ $$aRenzo, M. 
000006162 700__ $$aSabbi, E. 
000006162 700__ $$avan Loon, J. Th. 
000006162 700__ $$aVink, J. S.
000006162 773__ $$c7$$nL5$$pAstronomy & Astrophysics$$v668$$y2022
000006162 8560_ $$flaurent.mahy@ksb-orb.be
000006162 8564_ $$s2750270$$uhttp://publi2-as.oma.be/record/6162/files/Sana_2022_aa44677-22.pdf
000006162 8564_ $$s3403$$uhttp://publi2-as.oma.be/record/6162/files/Sana_2022_aa44677-22.gif?subformat=icon$$xicon
000006162 8564_ $$s7353$$uhttp://publi2-as.oma.be/record/6162/files/Sana_2022_aa44677-22.jpg?subformat=icon-180$$xicon-180
000006162 905__ $$apublished in
000006162 980__ $$aREFERD