000005782 001__ 5782
000005782 005__ 20241203110701.0
000005782 0247_ $$2DOI$$a10.1126/science.abo7063
000005782 037__ $$aSCART-2022-0063
000005782 100__ $$aMatoza, R.S.
000005782 245__ $$aAtmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga
000005782 260__ $$c2022
000005782 520__ $$aThe 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed propagating for four (plus three antipodal) passages around Earth over 6 days. As measured by the Lamb wave amplitudes, the climactic Hunga explosion was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced remarkable globally detected infrasound (0.01 to 20 hertz), long-range (~10,000 kilometers) audible sound, and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. Here, we highlight exceptional observations of the atmospheric waves.
000005782 594__ $$aNO
000005782 6531_ $$avolcanology
000005782 6531_ $$aseismology
000005782 6531_ $$aacoustics
000005782 6531_ $$aLamb wave
000005782 6531_ $$aglobal impact
000005782 6531_ $$aeruption
000005782 6531_ $$aexplosion
000005782 6531_ $$aopen data
000005782 700__ $$aFee, D.
000005782 700__ $$aAssink, J.D.
000005782 700__ $$aIezzi, A.M.
000005782 700__ $$aGreen, D.N.
000005782 700__ $$aKim, K.
000005782 700__ $$aToney, L.
000005782 700__ $$aLecocq, T.
000005782 700__ $$aKrishnamoorthy, S.
000005782 700__ $$aLalande, J.-M.
000005782 700__ $$aNishida, K.
000005782 700__ $$aGee, K.L.
000005782 700__ $$aHaney, M.M.
000005782 700__ $$aOrtiz, H.D.
000005782 700__ $$aBrissaud, Q.
000005782 700__ $$aMartire, L.
000005782 700__ $$aRolland, L.
000005782 700__ $$aVergados, P.
000005782 700__ $$aNippress, A.
000005782 700__ $$aPark, J.
000005782 700__ $$aShani-Kadmiel, S.
000005782 700__ $$aWitsil, A.
000005782 700__ $$aArrowsmith, S.
000005782 700__ $$aCaudron, C.
000005782 700__ $$aWatada, S.
000005782 700__ $$aPerttu, A.B.
000005782 700__ $$aTaisne, B.
000005782 700__ $$aMialle, P.
000005782 700__ $$aLe Pichon, A.
000005782 700__ $$aVergoz, J.
000005782 700__ $$aHupe, P.
000005782 700__ $$aBlom, P.S.
000005782 700__ $$aWaxler, R.
000005782 700__ $$aDe Angelis, S.
000005782 700__ $$aSnively, J.B.
000005782 700__ $$aRingler, A.T.
000005782 700__ $$aAnthony, R.E.
000005782 700__ $$aJolly, A.D.
000005782 700__ $$aKilgour, G.
000005782 700__ $$aAverbuch, G.
000005782 700__ $$aRipepe, M.
000005782 700__ $$aIchihara, M.
000005782 700__ $$aArciniega-Ceballos, A.
000005782 700__ $$aAstafyeva, E.
000005782 700__ $$aCeranna, L.
000005782 700__ $$aCevuard, S.
000005782 700__ $$aChe, I.-Y.
000005782 700__ $$aDe Negri, R.
000005782 700__ $$aEbeling, C.W.
000005782 700__ $$aEvers, L.G.
000005782 700__ $$aFranco-Marin, L.E.
000005782 700__ $$aGabrielson, T.B.
000005782 700__ $$aHafner, K.
000005782 700__ $$aHarrison, R.G.
000005782 700__ $$aKomjathy, A.
000005782 700__ $$aLacanna, G.
000005782 700__ $$aLyons, J.
000005782 700__ $$aMacpherson, K.A.
000005782 700__ $$aMarchetti, E.
000005782 700__ $$aMcKee, K.F.
000005782 700__ $$aMellors, R.J.
000005782 700__ $$aMendo-Pérez, G.
000005782 700__ $$aMikesell, T.D.
000005782 700__ $$aMunaibari, E.
000005782 700__ $$aOyola-Merced, M.
000005782 700__ $$aPark, I.
000005782 700__ $$aPilger, C.
000005782 700__ $$aRamos, C.
000005782 700__ $$aRuiz, M.C.
000005782 700__ $$aSabatini, R.
000005782 700__ $$aSchwaiger, H.F.
000005782 700__ $$aTailpied, D.
000005782 700__ $$aTalmadge, C.
000005782 700__ $$aVidot, J.
000005782 700__ $$aWebster, J.
000005782 700__ $$aWilson, D.C.
000005782 773__ $$pScience$$vFirst Release$$y2022
000005782 85642 $$ahttps://www.science.org/doi/10.1126/science.abo7063
000005782 8560_ $$fthomas.lecocq@observatoire.be
000005782 8564_ $$s2159531$$uhttp://publi2-as.oma.be/record/5782/files/science.abo7063-f2.jpg$$yGround-based observations. (A) Lamb wave arrival times for 2022 Hunga eruption (black) compared with 1883 Krakatau eruption (blue). (Inset) Lamb A1 arrival waveform comparison (3). Global record sections of (B) barometer, (C) infrasound, and (D) seismic data showing the multiple arrivals and wave passages (see Fig. 1A, inset); waveforms aggregated by radial distance (fig. S7). A separate Rayleigh R1 is associated with the later ~08:31 event. (E) Colocated microbarometer (black), infrasound sensor (blue), and seismometer (orange) waveforms; lower panel shows inverted displacement envelope. (F) Wideband peak-to-peak pressure versus distance comparing 2022 Hunga with large historical explosive events (table S2).
000005782 8564_ $$s27595$$uhttp://publi2-as.oma.be/record/5782/files/science.abo7063-f2.gif?subformat=icon$$xicon$$yGround-based observations. (A) Lamb wave arrival times for 2022 Hunga eruption (black) compared with 1883 Krakatau eruption (blue). (Inset) Lamb A1 arrival waveform comparison (3). Global record sections of (B) barometer, (C) infrasound, and (D) seismic data showing the multiple arrivals and wave passages (see Fig. 1A, inset); waveforms aggregated by radial distance (fig. S7). A separate Rayleigh R1 is associated with the later ~08:31 event. (E) Colocated microbarometer (black), infrasound sensor (blue), and seismometer (orange) waveforms; lower panel shows inverted displacement envelope. (F) Wideband peak-to-peak pressure versus distance comparing 2022 Hunga with large historical explosive events (table S2).
000005782 8564_ $$s47536$$uhttp://publi2-as.oma.be/record/5782/files/science.abo7063-f2.jpg?subformat=icon-180$$xicon-180$$yGround-based observations. (A) Lamb wave arrival times for 2022 Hunga eruption (black) compared with 1883 Krakatau eruption (blue). (Inset) Lamb A1 arrival waveform comparison (3). Global record sections of (B) barometer, (C) infrasound, and (D) seismic data showing the multiple arrivals and wave passages (see Fig. 1A, inset); waveforms aggregated by radial distance (fig. S7). A separate Rayleigh R1 is associated with the later ~08:31 event. (E) Colocated microbarometer (black), infrasound sensor (blue), and seismometer (orange) waveforms; lower panel shows inverted displacement envelope. (F) Wideband peak-to-peak pressure versus distance comparing 2022 Hunga with large historical explosive events (table S2).
000005782 905__ $$apublished in
000005782 980__ $$aREFERD