000005691 001__ 5691 000005691 005__ 20220413124631.0 000005691 0247_ $$2DOI$$a10.3390/rs14041050 000005691 037__ $$aSCART-2022-0042 000005691 100__ $$aVan Malderen, Roeland 000005691 245__ $$aGlobal Spatiotemporal Variability of Integrated Water Vapor Derived from GPS, GOME/SCIAMACHY and ERA-Interim: Annual Cycle, Frequency Distribution and Linear Trends 000005691 260__ $$c2022 000005691 520__ $$aAtmospheric water vapor plays a prominent role in climate change and atmospheric, meteorological, and hydrological processes. Because of its high spatiotemporal variability, precise quantification of water vapor is challenging. This study investigates Integrated Water Vapor (IWV) variability for the period 1995–2010 at 118 globally distributed Global Positioning System (GPS) sites, using additional UV/VIS satellite retrievals by GOME, SCIAMACHY, and GOME-2 (denoted as GOMESCIA below), plus ERA-Interim reanalysis output. Apart from spatial representativeness differences, particularly at coastal and island sites, all three IWV datasets correlate well with the lowest mean correlation coefficient of 0.878 (averaged over all the sites) between GPS and GOMESCIA. We confirm the dominance of standard lognormal distribution of the IWV time series, which can be explained by the combination of a lower mode (dry season characterized by a standard lognormal distribution with a low median value) and an upper mode (wet season characterized by a reverse lognormal distribution with high median value) in European, Western American, and subtropical sites. Despite the relatively short length of the time series, we found a good consistency in the sign of the continental IWV trends, not only between the different datasets, but also compared to temperature and precipitation trends. 000005691 594__ $$aSTCE 000005691 6531_ $$aGNSS 000005691 6531_ $$aintegrated water vapor 000005691 6531_ $$aclimate change 000005691 6531_ $$aspatiotemporal 000005691 6531_ $$alognormal distribution 000005691 6531_ $$aERA-Interim 000005691 6531_ $$aGOMESCIA 000005691 700__ $$aPottiaux, Eric 000005691 700__ $$aStankunavicius, Gintautas 000005691 700__ $$aBeirle, Steffen 000005691 700__ $$aWagner, Thomas 000005691 700__ $$aBrenot, Hugues 000005691 700__ $$aBruyninx, Carine 000005691 700__ $$aJones, Jonathan 000005691 773__ $$n4$$pRemote Sensing$$v14 000005691 8560_ $$feric.pottiaux@observatoire.be 000005691 85642 $$ahttps://www.mdpi.com/2072-4292/14/4/1050 000005691 8564_ $$s9520050$$uhttp://publi2-as.oma.be/record/5691/files/remotesensing-14-01050-v2.pdf 000005691 8564_ $$s4578$$uhttp://publi2-as.oma.be/record/5691/files/remotesensing-14-01050-v2.gif?subformat=icon$$xicon 000005691 8564_ $$s4975$$uhttp://publi2-as.oma.be/record/5691/files/remotesensing-14-01050-v2.jpg?subformat=icon-180$$xicon-180 000005691 905__ $$apublished in 000005691 980__ $$aREFERD