
Journal of Geodesy           (2021) 95:57 
https://doi.org/10.1007/s00190-021-01513-9

ORIG INAL ART ICLE

Quantification of corrections for the main lunisolar nutation
components and analysis of the free core nutation from VLBI-observed
nutation residuals

Ping Zhu1 · Santiago Andrés Triana1 · Jerémy Rekier1 · Antony Trinh2 · Véronique Dehant1

Received: 28 June 2020 / Accepted: 9 April 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The attempt to quantify the corrections of lunisolar nutation components was made after analysis of six sets of Earth’s
orientation parameters (EOP). The deviations of the long-term nutation components about IAU2006/IAU2000A precession–
nutation model are consistent with the uncertainties suggested by Mathews et al. (J Geophys Res Solid Earth, 2002. https://
doi.org/10.1029/2001JB000390), but they exceed the errors determined in this work. The corrections are validated using the
IERS 14C04 and IVS 19q4e combined solutions. After applying the corrections found in this work to the 14C04 nutation
residuals, we analyzed the remaining signals, which contain the signature of the free core nutation (FCN). The eigenperiod
of the FCN is fixed to the value derived from the resonance of the non-hydrostatic earth model in a priori. The amplitude of
FCN is computed by fitting observations to the empirical model using a sliding window, the length of window is determined
by taking into account the interference between those close nutation components and the FCN. In addition, we also fitted
the nutation residuals by a viscous damping function; both methods produce the same results in the amplitudes of FCN. The
magnitude of the free core nutation bears a “V-shape” distribution, and furthermore, the oscillation of the FCN shows a decay
and a steady reinforcement before and after 1999. In order to examine the origin of the modulation in FCN’s magnitude,
we briefly analyzed the possible damping or beating mechanism behind it. We diagnosed the magnitude and running phase
changes of FCN by comparing it with the occurrence of the transient geomagnetic jerks. The weighted root mean square
errors of nutation residuals are minimally reduced about 36% when the corrections to the 21 nutation components and the
FCN signature are considered together.
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1 Introduction

The torque induced by the Moon, the Sun, and the other
planets are precisely known; the response of the rigid Earth
to these external torques (Moon, Sun, and planets) deviates
slightly from that of a pure solid body because of complicated
geophysical processes involving the seasonal mass circula-
tion of the atmosphere and ocean, the deformable mantle, the
presence of a liquid outer core and solid inner core plus the
coupling mechanisms at their interfaces. Very Long Base-
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line Interferometry (VLBI) technique is the most accurate
way to measure the celestial pole offset (CPO), which are
observed differences between the conventional model for the
precession–nutation corrections of the CIP (Celestial Inter-
mediate Pole) and the direction of the celestial pole observed
using VLBI.

In practice, the conventional initial precession and nuta-
tion model is constructed based on a simplified solid Earth
model (Kinoshita 1977). The IAU1980 nutation series (Sei-
delmann 1982) are developed from an elastic rotational
oceanless Earth model (Wahr 1981). In those products,
the contribution from planetary gravitational attraction is
neglected, but it has been introduced after nearly at the
same time by other efforts (Roosbeek and Dehant 1998; Bre-
tagnon et al. 1998; Hartmann et al. 1999); the precision of
all those series is truncated at the level of a tenth of a µas.
With the accumulated VLBI observations, the discrepancy
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between the observations and the nutation series IAU1980
was significant. The deviation with respect to the IAU1980
nutation series has been investigated by several authors with
the VLBI measured Earth’s nutation (Herring et al. 1991).
Zhu et al. (1990) apply the covariance analysis method, in
which 106 nutation termswere fitted to find the corrections to
the IAU1980 series (Zhu et al. 1990). The root mean square
errors between this series and the IAU1980 are around 51
mas and 31 mas, corresponding to the changes in longitude
and obliquity, respectively.

Herring et al. (2002) estimated the corrections for 21major
nutation terms w.r.t. the IAU1980 nutation model and the
secular trends in longitude and obliquity w.r.t. the IAU1977
precession rate from a combined series by GSF and USNO,
which cover the observation period from 1980 to 2000. They
found the standard deviation (SD) of the nutation ampli-
tudes with a period shorter than 400 days is 5 µas, and a
value of 38 µas for the period longer than 400 days when
numerical results were compared with the MHB2000 nuta-
tion series inferred from a set of basic Earth parameters
(BEP) (Mathews et al. 2002; Herring et al. 2002). The ampli-
tudes of the MHB2000 nutation components are obtained
by convolving a designed transfer function with the rigid
Earthmodel REN2000 (Souchay et al. 1999). TheMHB2000
uses the VLBI observation fitted series (Herring et al. 2002)
as input to systematically estimate the various effects such
as the indirect loading and the core mantle couplings. This
series was adopted by IAU as the IAU2000 nutation model
(Soffel et al. 2003). The correction to the precession rate is
discussed w.r.t. IAU2000 values by Capitaine et al. (2003),
and it has been updated as the IAU2006 precession model,
which has improved polynomial expressions for the preces-
sion of the ecliptic and the equator. These initiatives have led
to a new adopted model the IAU2006/2000A based on the
precession determined byCapitaine et al. (2003) and on nuta-
tion model or a non-rigid Earth as determined by Mathews
et al. (2002). The IAU2006/IAU2000A precession–nutation
model is composed of 678 lunisolar and 687 planetary terms
induced by the gravitational attraction from the Moon, the
Sun, and the other planets. The Basic Earth Parameters
mainly includes the dynamic flattening of the core, the cou-
pling constants at the core mantle boundary and several
compliances (Mathews et al. 2002; Herring et al. 2002). The
BEPs were estimated again from a longer series by Bayesian
inversion (Koot et al. 2008). A comparison using the both
methods has been provided recently (Zhu et al. 2017), re-
estimating the parameters.

In this work, instead of estimating a new transfer function,
corrections of two times 21 lunisolar nutation component are
determined from the latest EOPprovided by various indepen-
dent analysis centers; totally it accounts for 42 terms in the
nutation series. We start with eleven EOP solutions, remov-
ing five sets of data due to the large gap in the time series

or due to higher noise level than the rest of data. The full
name and location of the all eleven data analysis centers
are given at Table 2. By analyzing jointly the six remaining
EOP series, we determine the corrections for the 21 major
nutation residuals components. The amplitudes associated
with the correction of each term are determined from all the
six EOP solutions. After recombining those values with the
other nutation components from the IAU mode, these two
times 21 new nutation amplitudes can be used to compute
a new nutation series in longitude and obliquity or as celes-
tial pole offsets that we call Fits20 and that is available on
an internet repository under the name of Earth’s NuTAtion
(ENTA) (Zhu et al. 2020). We can then compare them with
the IAU2006/2000A nutation series by using the IERS and
IVS combined solutions.

After correcting those components from the IERS 14C04
nutation residuals dX and dY, we analyze the signature of
the free core nutation (FCN). The eigenperiod of the FCN
is fixed to the −430 solar days from the previous deter-
mination based on the analysis of the resonance effect in
the transfer function made by Dehant et al. (2003), Koot
et al. (2008) and Zhu et al. (2017). We then determine the
amplitudes of the FCN mode on dX and on dY components,
which correspond to the coefficients of real and imaginary
part of the FCN mode, using sliding windows as it was done
previously (Herring et al. 2002; Lambert 2006); meanwhile,
we fitted the amplitude of the FCN by involving excitation
and a viscous damping function after. The perturbation in
the angular velocity, the decaying rate and the magnitude
of the FCN are discussed by comparing it with a simpli-
fied viscous damping mechanism, with the possible beat
between two modes and with the occurrence of the geomag-
netic jerks in the end. In general, the weighted root mean
square errors (wrms) are computed about IAU2006/2000A
andFits20 andFCN removed residuals (Table 1). Themethod
to find the corrections to the 21 nutation component listed in
the IAU2006/2000A is explained in Sects. 2 and 3. The way
to fit the FCN is discussed separately in Sect. 4.

2 VLBI-determined global Earth Orientation
Parameters

The data used in this work came from the following two
sources: the international Earth Rotation Systems Service
(IERS) and the Crustal Dynamics Data Information System
(CDDIS), National Aeronautics and Space Administration
(NASA). The EOP 14C04 are obtained through the IERS
(www.iers.org). The 14C04 is aligned to the ITRF 2014
(Altamimi et al. 2016) and the ICRF2 the most recent ver-
sions of the conventional reference frames (Bizouard et al.
2018); a recent update on the reference frame has been intro-
duced by Charlot et al. (2020). The IVS 19q4e is provided by

123

www.iers.org


Quantification of corrections for the main lunisolar nutation components and analysis of the… Page 3 of 15    57 

Table 1 The wrms is computed
with the IERS (�:14eopc04) and
IVS (�:ivs19q4e) combined
solution, the unit of wrms is µas

Period IAU Fits20 FCN IAU Fits20 FCN Size

1984–2020� 171.7 161.0 108.8 175.1 163.5 106.1 13,465

1984–1999� 177.2 173.7 148.8 170.6 162.5 132.2 5820

2000–2020� 170.1 156.3 91.5 176.6 163.7 95.6 7645

1984–2020� 173.2 154.1 68.9 173.9 160.7 71.0 4216

1984–1999� 112.9 125.3 96.6 150.9 137.6 107.7 1501

2000–2020� 175.0 155.7 66.8 175.0 161.9 68.1 2715

The wrms is repeatedly computed with the IAU2006/2000A model, with the Fits20 series, and after applying
the corrections found in Fits20 plus the FCN signature determined from the empirical model using the 8-year
sliding windows

Table 2 The name of the each VLBI center and their locations is listed

ASI Space Geodesy Center Matera, Italy

BKG Federal Agency for Cartography and Geodesy (BKG Leipzig) and Institute of Geodesy and
Geoinformation of the University of Bonn (IGGB), Germany

CGS Space Geodesy Center, Matera, Italy

GSF NASA Goddard Space Flight Center, USA

OPA Observatoire de Paris, France

SHA Shanghai Observatory, China

USN United States Naval Observatory, USA

AUS GEOSCIENCE AUSTRALIA (AUS), Australia

IAA Institute of Applied Astronomy, OCCAM/GROSS, Russia

SPU Saint-Petersburg University, Russia

MAO Main Astronomical Observatory, National Academy of Sci. of Ukraine (MAO NASU), Ukraine

IVS International VLBI Service

IERS International Earth Rotation and Reference Systems Service

the International VLBI Service for Geodesy and Astrometry
solutions (IVS). Both IVS and IERS provide combined EOP
solutions. The rest of global EOP solutions are from online
archives of the Crustal Dynamics Data Information System
CDDIS. All the data sets can be found online at the IERS or
the CDDIS website (www.iers.org and ftp://cddis.gsfc.nasa.
gov/vlbi). The full name and location of the all eleven data
center are given in Table 2. More detailed information about
each analysis center that provided a global EOP solution is
listed in Table 3.

Importantly, differences exist in the ways each analysis
center selects VLBI observation sessions, in the software
used, and in the techniques applied to correct the local
environmental effects that are alsonot exactly the same.How-
ever, concerning the nutation model, all the analysis centers
employ the IAU2006/IAU2000A precession–nutation model
as a priory. This suggests that the discrepancies in the ampli-
tude of each nutation term, which has been derived from
different centers, could originate from the following two
sources: inconsistencies in the data used and differences in
the data processing.

The nutation residuals are built from the IAU2006/2000A
precession nutation model and from the global deployed

VLBI stations, which are continuously monitoring radio
waves emitted from the quasars. In the processing, the
motions of the VLBI stations, such as the non-rigid Earth
tides, have been corrected for. Additionally, the other effects
such as deformation induced by atmosphere, ocean, and seis-
mic activities have been taken into account by each center.
These procedures are summarized in Table 3. After the pro-
cessing of the VLBI data, final series of Earth Orientation
Parameters (EOP) are obtained, which can be used as such
or be combined in a next step to produce new series avail-
able at the international reference center such as IERS and
IVS. The nutation residuals can bring valuable information
to study the stability of the quasars and evaluate the interna-
tional celestial reference frame, and probe the interior of the
Earth (Dehant and Mathews 2015). The nutation residuals
from IERS 14C04 and IVS 19q4e are plotted in Fig. 1. The
IERS 14C04 data set is covering a period from January 1984
to December 2020 with 13,465 samples and the IVS solu-
tion is from November 1984 until October 2020 with 4216
solutions, respectively.

The corrections to the nutation component are reported by
the study of Gattano et al. (2017) and Belda et al. (2017). The
root-mean-square (RMS) error after correcting the nutation
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Table 3 To retrieve the global EOP from VLBI measured time delay, a various of local environmental effects need to be corrected

Antenna thermal deformation: Model Nothnagel 2008

Tropospheric delay: VMF1, NMF dry mapping function Saastamoinen

Zenith delay: Calculated using logged pressure, temperature; a priori mean gradients
from DAO weather model

Tides: Solid earth tides, pole tides, IERS conversion 1996/2000/2003/2006

Atmosphere loading: Atmospheric pressure loading time series provided by the Goddard
VLBI group NCEP Reanalysis model

Ocean loading: FES2004 Hardisp model based on TPXO7.2 model GOT00.2 Ocean
tide model

Post-seismic deformation correction: exponential transient functions of the form A(1 − exp((t − t0)/τ) a
logarithmic functions of the form A log(1 + (t − t0)/τ))

Others: The observation durations shorter than 18 h were not used. The data of
sources which have two gravitational lenses and less than 4 good
observations in all sessions were excluded

Software: Calc/Solve. Version 9, 10 or 11 (ASI, BKG , CGS, GSF, OPA, SHA,
USN) Occam 3.5, 6.2, GROSS (AUS, IAA, SPU); SteelBreeze-2.0.2
(MAO)

Fig. 1 The IERS 14C04 and the IVS 19q4e nutation residuals have been analyzed; black solid line is the original data from IERS and IVS,
respectively, and green solid line is the residuals after applying Fits20 corrections (see Fig. 2) found in this work; a −3.0 mas offset was added to
it for clarity reasons

harmonic components is about 130µas (Gattano et al. 2017);
however, in our case, we have found the weighted root mean
square errors (wrms) is about 110µas from14C04and70µas
from IVS 19q4e, respectively. The wrms computed with the
14C04 and 19q4e solutions published by IERS and IVS is
summarized in Table 1.

3 The corrections to the sine and cosine of
coefficients the nutation term

The CIP axis in space has two type of motion: the precession
and nutation. The Cartesian coordinates of this pole of the
Earth’s axis in the geocentric celestial reference frame are:
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X = ψA + Δψ sin ε0 Y = εA + Δε (1)

where ψA and εA are the precession quantities in longitude
and obliquity referred to the ecliptic of epoch and Δψ , Δε

are the nutation angles in longitude and obliquity referred to
the ecliptic of epoch where ε0 (= 84381.40600′′) is the IAU
2006 value for the obliquity of the ecliptic at J2000.0 (Petit
and Luzum 2010).

The accuracy of the equation is limited since X and Y
are usually defined within the non-rotating origin convention
[see IERS Conventions (Petit and Luzum 2010)], while Δψ

and Δε are defined with respect to the true equinox of date
and is degrading with time since the precession is measured
from the intersection between the mean equator of J2000
and the ecliptic of J2000, and is in realty a combination of
motions of the equator and of the ecliptic (see Dehant and
Mathews 2015) to reach the mean equator of the date and the
ecliptic of date. For studying the short period motions (high
frequency), we can make the approximation that the preces-
sion is constant and replace sin ε by mean obliquity at J2000
so that sin ε0 = 0.397777. Then the elliptical motion can
be decomposed into circular motions (Dehant and Mathews
2015):

Δψn(t) = sin ε0(Δψ
ip
n sinΦ(t) + Δψ

oop
n cosΦ(t) (2)

Δεn(t) = Δε
ip
n cosΦ(t) + Δε

oop
n sinΦ(t) (3)

where Δψn and Δεn are the amplitude coefficient of nth
nutation term, the ip and oop stands for the in-phase and
out-of-phase components, respectively, Φ is the argument
of nutation and is mainly related to the arguments in the
lunisolar potential. After application of the mean obliquity
correction to the changes in longitude, the value becomes
the dX of the Celestial Pole Offset (CPO), and the change in
obliquity is the dY of the CPO. The observed CPO X and Y
are calculated through:

X = sin ε0Δψ =
1365∑

i=1

19∑

j=1

[[Asi j

+ Ȧsi j ti ] sin(Φi j ) + Aci j cos(Φi j )] (4)

and changes in obliquity (dY ) is:

Y = Δε =
1365∑

i=1

19∑

j=1

[Bsi j sin(Φi j ) + [Bci j + Ḃci j ti ] cos(Φi j )]

(5)

where As and Bs are the coefficient of the sine part; the
Ac and Bc are the coefficient of the cosine part. A is for
X + dX and B is for Y + dY , dX and dY are the nutation
residuals after removing model values, let Cx = Ȧst sin(Φ),

and Cy = Ḃct cos(Φ), on substituting them in Eqs. (4) and
(5), we obtain:

dX − Cx = As sinΦ + Ac cosΦ (6)

dY − Cy = Bc cosΦ + Bs sinΦ (7)

In order to find the amplitudes of the 678 non-rigid Earth
nutations (Ac, As, Bc, Bs). Equations (6) and (7) can be
transformed to a linear system, Ax = b, where x = [As Ac]T
(where T means the transpose), and Ay = c, where y =
[Bc Bs]T. The b and c are from the VLBI measurements and
A is the cosine or sine coefficientmatrix,which are calculated
from the argument. The unknowns are the x and y. The size of
matrix A is m × n, where m is the total number of observed
CPOs, which increases with time, and n is the number of
nutation components; here, n is equal to 678 × 2 for the
lunisolar components. The amplitude matrices (x, y) can be
solved through an iterative algorithm.

An iterative method is usually applied to solve square
asymmetric systems, e.g., under-determined consistent sys-
tems, over-determined systems and regularized systems
(Ericsson and Ruhe 1980). For m � n, this is a typical over-
determined systems. The rank of matrix (r ) is computed by
using the singular value decomposition (svd) method (Saad
2003). A synthetic time series was generated from 20,000
(Aug. 21, 1913) to 80,000 (Nov. 28 2077) day in Modified
Julian Date (MJD) with one day step. For the contribution
of lunisolar origin, this forms a coefficient matrix A with a
dimension (120,002× 1356). The (r) of A is equal to 1324.
The ranks of the coefficients matrices (A) are equal to the
rank of the augmented matrices (A b) but smaller than the
total number of unknowns (1356); therefore, the system is
consistent but x and y has infinite solutions. In order to find
the most likely solutions of the system (A b), an iterative
algorithm called the Lanczos method was applied. The Lanc-
zos method is used to solve the eigenvalue and eigenvector
approximation through an iterative algorithm process. The
optimized solution is found after a series of trails involving
different μB, supposing,

(A − μB)x = b (8)

So that (A − μB) = LDLT is factorized under the form
of LDLT with triangular L and diagonal D. x can then be
solved from inverting these matrices,

x = L−1′
D−1L−1b (9)

According to theLanczosmethod,B = CCT andC is rect-
angular and is assumed tohave linearly independent columns.
Multiplying byCT andC the inversion of Eq. (8), ont obtains

(A − μI)−1 = C′(A − μB)−1C (10)
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Fig. 2 The corrections for the 21 nutation components were computed
for the IERS 14C04 and IVS 19q4e. We plotted two long period har-
monic components (18.6 plus 9.3 yrs) and the low pass with a cutoff
frequency of 8 years filtered nutation residuals of IERS and IVS. A

∼ 50 µas offset and ∼ −70 µas is presented in the dX and dY, respec-
tively. The exact values of the 21 nutation components are listed at
Table 4

Table 4 The unit of period is days, the positive sign is progrademotion,
and negative represents retrograde one

Period Δa+
ip σ Δa+

oop σ Δa−
ip σ Δa−

oop σ

−6798.38 4.4 3.6 55.6 5.1 9.3 2.4 − 3.4 2.4

−3399.19 20.5 4.8 3.4 1.2 13.6 1.7 7.2 0.4

1615.75 1.9 5.0 21.0 3.7 − 1.9 1.0 − 15.7 3.6

1305.48 − 10.6 2.4 1.8 0.2 − 0.5 0.8 2.0 0.2

1095.17 − 9.4 2.3 − 1.4 0.0 − 5.0 0.6 11.1 2.3

386.00 17.4 8.0 − 8.3 0.5 − 10.4 1.8 − 15.8 4.3

365.26 12.9 3.8 − 5.3 3.9 21.3 1.8 2.7 1.2

−346.64 12.4 4.0 − 8.5 4.2 3.5 1.2 − 11.2 0.1

182.62 − 12.3 1.9 − 14.9 3.0 − 4.7 1.0 − 0.3 0.7

121.75 − 8.5 3.4 3.0 2.2 1.1 1.0 − 9.6 0.7

31.81 − 6.3 2.4 − 2.6 1.0 − 2.3 0.7 1.6 0.5

27.56 1.3 2.1 − 2.2 1.9 − 4.3 0.7 − 15.4 0.4

23.94 0.9 3.0 − 3.1 1.7 5.0 0.8 − 3.6 0.8

14.77 − 0.8 2.8 1.9 0.5 − 1.8 0.7 4.0 0.3

13.78 1.7 1.2 0.6 0.6 − 3.9 0.8 − 0.3 0.7

13.66 9.8 1.7 − 12.7 2.4 − 13.9 1.1 − 2.3 1.2

9.56 3.4 2.6 − 1.0 1.2 1.9 0.5 − 2.2 0.5

9.13 − 4.3 3.6 3.9 1.4 0.3 0.9 1.1 0.6

9.12 − 4.2 3.5 2.6 1.0 0.4 0.8 5.2 0.4

7.10 − 3.0 4.2 − 2.0 1.2 − 1.5 0.8 − 3.2 0.2

6.86 1.8 2.5 − 1.3 0.6 0.9 0.9 0.4 0.5

The differences between amplitudes (in µas) of the major nutation
component, which were fitted from each independent set of data and
IAU2000 values, the errors are the standard deviation among 6 solutions

The solutions of x provided by Eq. (9) are searched
through a range of values [μ0, μ1, . . . , μn], at each trial,
and similarly for y. A residual series is computed with a set
of intermediate values of x and y. The final results were
obtained when the weighted-root-mean-scattering (wrms)
(Herring et al. 1986) converged, and the numerical solutions

of x and y corresponding to the minimum wrms values were
selected as the final results of 678 nutation components.

In our case, we use the same method to find the two times
21 corrections to the VLBI nutation series with respect to
the IAU reference nutation model, based on our selected six
EOP solutions. The other consideration to select these 21
terms is to avoid the interferences between correlated terms
as demonstrated by our synthetic time series simulation or
proofed by Petrov (2007). Because of the higher uncertain-
ties in the CPO determinations prior to 1990 (Behrend et al.
2009), we fitted the 42 dominant nutation coefficients using
the observations after 1990. We then computed the dX and
dY using the corrections found here and combining them
with the other nutation amplitudes from the IAUmodel. Fig-
ure 1 shows the original 14C04 nutation residuals and the
corrected one.

The corrections for the 21 nutation terms are shown in
Fig. 2 and given at Table 4. The wrms are then calculated
from two sets of nutation residuals, built either using the
IERS or the IVS observations, and with respect to both, the
Fits20 series and the IAU2006/IAU2000A model. As seen
from Fig. 3, the wrms of dX and dY are reduced signifi-
cantly after 1990, which could be attributed to the fact that
the quality of the VLBI measurements has been significantly
improved since then.We also see in this Figure that the wrms
obtained from the corrected series (Fits20) is relatively in
a good agreement with the wrms computed with respect to
IAU2006/IAU2000Amodel. However, comparing the values
for all the years of both, the residuals with respect to Fits20
and the residuals about IAU2006/IAU2000amodel,we found
between 60 and 70% of lower value for both IERS and
IVS CPO residuals computed using Fits20 series compared
with the residuals computed using the IAU2006/IAU2000A
model. We notice in all cases that the FCN signals are
remaining in the dX and dY residuals. We treated it in the
following analysis using the IERS 14C04, which provides
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Fig. 3 The weighted-root-mean-square-errors (wrms) were computed using the IERS 14C04 and the IVS 19q4e, respectively. The residuals with
respect to the IAU2006/2000A model are marked with circle, the Fits20 model is rectangular and FCN free residual is triangle

regular daily solutions of the dX and dY with respect to the
IAU2006/2000A precession nutation model.

4 The free core nutation

The misalignment of the instantaneous rotation axis and
figure axis produces the free core nutation (FCN) in the
celestial reference frame or an nearly diurnal free wobble
(NDFW) in the terrestrial reference frame. The flow inside
the fluid core of the Earth is the complex result of various
physical processes and phenomena including the convect-
ing dynamo action, viscosity, etc. It is however possible to
extract valuable information regarding its response to (and
influence on) planetary rotation by approximating its dynam-
ics at these timescales as that of an inviscid flowwith uniform
vorticity and an ellipsoidal boundary. The flow then resem-
bles a solid body rotation around a uniform rotation vector
ω = 2π/430 (radian/day) whose orientation in time is gov-
erned by a Liouville equation analogous to that describing
the rotation of the mantle. When observed from the inertial
frame, this vector presents a slight misalignment with respect
to the mantle rotation axis proportional to the ellipticity of
the CMB.Without external tidal torque, these equation allow
determining the FCN rotational normal mode with a nearly
diurnal frequency (Dehant and Mathews 2015). If excited,

the normal mode has a strong wobble in the fluid compared
to the wobble of the Earth’s mantle. This mode can be seen as
a generalization of the well-known spin-over mode of fluid
dynamics—which corresponds to the simplest of the inertial
modes inside a rotating fluid cavity—to the case where the
motion of the cavity (here the Earth) is not given a priori (Tri-
ana et al. 2019; Rekier et al. 2020). This mode is very well
known in the nutation theory as it induces resonance effects
in the nutation amplitudes. The transfer function for nutation
(Wahr 1981), which expresses the ratio between non-rigid
and rigid Earth amplitudes of the nutation, is identical to the
transfer function for the non-rigid and rigid Earth amplitudes
of wobbles. These transfer functions include the resonance
effects of the FCN.

In order to determine the FCN from the observations, on
the one hand, an empirical model can be applied to directly
fit the FCN-free mode period and amplitude from VLBI-
observed nutation residuals (Lambert 2006; Krásná et al.
2013; Belda et al. 2016; Gattano et al. 2017; Malkin 2013).
On the other hand, the FCN period can be directly or indi-
rectly obtained from the determination of the resonance in
the nutation transfer function. For instance, the eigenperiod
was directly evaluated from the nutation resonances to be
between −429.8 and −432.8 solar days by Roosbeek et al.
(1999). Mathews et al. (2002) and Dehant and Mathews
(2015), instead, used the analytical expressions of the FCN
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frequency and showed that it is depending on the flattening
of the core, the couplings at the core mantle boundary and
several pre-defined compliances (Mathews et al. 2002).

By fitting those parameters, the eigenperiod of FCN is
found around−430 solar days. The minus sign indicates that
the motion is retrograde. We are now interested in the free
mode that can be excited. The atmosphere is often consid-
ered as the primary source of excitation (Lambert 2006). In
this work, we consider that the eigenperiod of the FCN is
established in a good agreement by estimating the physical
Earth parameters using Bayesain inversion in time domain
or least square analysis in frequency domain, respectively
(Koot et al. 2008; Zhu et al. 2017).

In our procedure, we firstly applied the two times 21 cor-
rection terms found from the six sets of EOP solutions to
the IERS 14C04 nutation residuals. The so-obtained time
series are VLBI observations corrected for the best nutation
model as possible. After that, we fit it to a time-varyingmodel
(Eq. 11) with a 8-year window and sliding it by a constant
shift in order to represent the time dependency of the mode.

{
dXfcn(t) = Ac

fcn cos(ω f ti ) − As
fcn sin(ωti ) ts < ti < te

dYfcn(t) = As
fcn cos(ω f ti ) + Ac

fcn sin(ωti ) ts < ti < te
(11)

where dXfcn and dYfcn are the time variations of the FCN in
celestial X and Y pole coordinates, respectively. The ω f =
−2π/430 radian/day is the angular frequency of the FCN
and fixed, t is Julian date, ts and te is the start and end date of
the given window, Ac

fcn and As
fcn are the amplitudes of sine

and cosine for each given moving window.
The mode in a complex plane can be expressed as Ac

fcn +
i As

fcn, with the modulus equals to Afcn =
√

(Ac
fcn

2 + As
fcn

2)

and the running phase φfcn = 2a tan(As
fcn/(A

c
fcn + Afcn))

for a given window.The coefficient of sine and cosine com-
ponents of the fitted FCN are plotted in Fig. 4. Using the
method of sliding windows, we could extract both the annual
and FCN amplitudes of sine and cosine from the dX and the
dY .

Until now, we were speaking about a window length
of several years in order to eliminate possible inferences
between close nutation components and the FCN. In princi-
ple, the annual contribution has been taken out of the data by
fitting the annual as one of the 21 nutations components con-
sidered in our procedure. However, this correction is fixed
with time, while the atmospheric effects on nutation may
change as function of the years. In order to choose the best
time window among the different time windows for fitting
the Ac

fcn and As
fcn (or equivalently , the real and imaginary

parts of Ac
fcn + i As

fcn), we choose seven windows, varying
from 2 to 8 years and moving it with 1 year or 1 day step
(See “Appendix”). Finally, the 8-year window was selected

Fig. 4 The shadow area are the errors of each measurement, which
are coming from the formal uncertainties of IERS 14C04 product. The
amplitudes of the real (red) and the imaginary part (black) of dX + idY
were computed with a 8 years sliding window and moving with one day
step. The dash lines are the annual nutation (S1) component

because of the remaining annual terms and the FCN are well
separated and the small annual amplitude variation could be
determined (see Fig. 4).

Themagnitude Afcn and the running phaseφfcn of the FCN
are calculated. The left-hand panel of Fig. 5 shows the mag-
nitude of Afcn. The Afcn bears a ‘V-shape’, which reaches
the minimum in 1999. The φfcn and Afcn were plotted in a
polar coordinate at the right panel. The motion of the celes-
tial pole related to the liquid core is not strictly following a
circular or ellipsoid path neither. At the beginning, it moved
close to a straight line towards the east (refer to the polar
map); in 1994, it had a abrupt change of the direction to the
south at 120◦. The crossing of 180◦ and 0◦ happened around
1998 and 2008, respectively. Another redirection occurred
in 2003 at the 300◦. There are three crossings: the 150–330
plane, which corresponds to 1990, 1998 and 2005. Theywere
all coincident with the occurrence of the geomagnetic jerks
which were the consequence of the rapid change of the fluid
motion (Mandea et al. 2010) in a time window about 1 year
in advance or behind, which were marked in the right panel
in Fig. 5.

Having substituted the series of Ac
fcn and the As

fcn to
Eq. (11), we generated the waveform of the FCN with
a daily cadence, which resembles a negative damping
before 1999 and a positive one after 1999 (Fig. 6). We
used a simplified viscous damping equation y(t) = A ∗
e−ζω f t sin(

√
1 − ζ 2ωd t + ϕ) (where ωd is the damped fre-

quency) to separately model the FCN before and after the
minimum value of Afcn (Fig. 7). It yields the decay rate
ζ = 3.76 × 10−4, ζ = −3.11 × 10−4 for dX , covering
the period from 1988 to 1998 and 1999 to 2012, respectively.
The value from dY is ζ = 1.84 × 10−4, ζ = −3.03 × 10−4

following the same convention of the dX . From 2012 to the
end of 2015, the oscillations of the dX and dY seem to enter
another phase, in which, the amplitude changes turned into a
more stable stage. If we fit it with the same viscous damping
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Fig. 5 The magnitude (left panel) and the phase (right panel) of FCN
were computed with the real and imaginary parts of the FCN, which are
plotted in Fig. 4. The red solid line in the right panel is the result with 1

year sliding step and the blue one with one day step. The errors are the
normal uncertainties of the 14C04

equation, it produced the ζ = 2.41× 10−5 and 2.47× 10−5

for the dX and dY component, which is a value more close
to the one obtained from the resonance analysis (Koot et al.
2008). In Fig. 5, we compare the values of the FCN obtained
by a sliding window and the ones obtained from this damp-
ing formula. If the oscillation continuously develops in this
way without other perturbations, we will get a more robust
result. In this case, we need at least another 4 to 5 years of
additional data to confirm the new phase; this is also valid
for the Afcn distribution.

5 Discussion and conclusions

We have analyzed 11 sets of individual global EOP solutions
and selected 6 of them to quantify the corrections of nuta-
tion terms listed in the IAU2006/IAU2000A model. Starting
from these six sets of CPO residuals with respect to the
IAU standard, the corrections to the amplitudes of sine and
cosine components were obtained using an iterative method.
After applying the corrections to the 21 nutation terms of
IAU2006/IAU2000A, we generated a series called Fits20.
In general, significant differences between Fits20 and the
IAU2006/2000A nutation series remain in the long period
wave 18.6 years, 9.3 years, the annual and the semi-annual
component, which exceed their associated errors. When we
compare the 21 nutation terms that we have fitted with those
of Herring et al. (2002) and Mathews et al. (2002), although
the results were close, they were inconsistent considering
a narrow range of standard errors was determined at those
frequency band. This indicates that there were still some
contamination fromother phenomena in the previously deter-
mined amplitudes (Herring et al. 2002). Furthermore, the
corrections we found here is time-dependent (Fig. 2); thus,
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Fig. 6 The dX and dY components of the 14C04 were plotted with
its associated normal uncertainties. The red solid line are the FCN sig-
natures computed by substituting the amplitudes obtained through the
sliding windows to Eq. (11)

the effect on the nutation residuals reduction are not uniform
(see Fig. 3). But since those 21 nutation terms are the input of
the MHB2000 nutation theory, a set of basic Earth’s parame-
ters (BEP) are inferred from the amplitude of these 21 major
terms. Since the new corrections are exceed, the uncertain-
ties of 21 nutation components determined in that model; it
is worth to evaluate the BEP again. We have exercised this
kind of research with 14 nutation terms by Zhu et al. (2017);
however, except the imaginary part of coupling constant at
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Fig. 7 The FCN signature are separated into two groups before and
after 1999. The green solid line is the mode obtained from the slid-
ing windows fitting results and the red solid line is the viscous-damping

modeling to the green curve. The shaded area is the normal uncertainties
of each solutions accompanied in the 14C04 solutions

the ICB shows a larger deviation, the rest of parameters are
consistent with the BEP found by Mathews et al. (2002) and
Koot et al. (2008); this is worth to be investigated again with
corrections found in this work.

We tested our Fits20 series with respect to the IAU2006/
IAU2000A model by recalculating for both the observed
nutation residuals using the latest IERS EOP(14C04) com-
bined solutions covering the period between 1984 and
2020 and the IVS (19q4e) combined solutions. The yearly
wrms were computed using these two sets of CPO w.r.t.
IAU2006/IAU2000A and Fits20, respectively. To be noticed,
the FCN was not removed from the dX , and dY , and the for-
mal a priori uncertainties are coming from the 14C04 and
19q4e solutions. It was essential to keep the same weights
when we calculated the wrms w.r.t. both nutation series,
as it guarantees that the wrms indicating deviations from
the reference model but not the uncertainties of the model
itself. The annual distributions of wrms are close to each
other, and about 60 to 70% of these populations have lower
wrms when considering Fits20 series than when considering
IAU2006/IAU2000A. We computed the annual wrms again
after removing the FCN from the nutation residuals about
Fits20 (Fig. 3); it shows that the wrms can be minimally
reduced 36%. A constant offset of ∼ +50 µas in dX and
∼ −70 µas in dY are obtained from the IERS and IVS solu-

tions, which may be linked to the bias of the precession rate
or the noise from quasars.

The FCN normal mode amplitudes were directly fitted
from the nutation residuals with respect to our Fits20 model
using either a sliding window or an empirical model based
on damping formulation. Since the FCN is a nearly diurnal
free wobble (NDFW) in the mantel frame or equivalently
a period of −430 days in an inertial frame, it is close to
the annual nutation. The latter one is profoundly influenced
by the atmosphere and ocean with a nonlinear behavior. In
order tominimize the perturbation from those terms and keep
a reasonable length of data to fit the FCN, we tested differ-
ent window-length from 2 to 8 years, in which the 8-year
window gave the best compromise result to reduce the per-
turbations from the interfering frequencies (see “Appendix”).
In addition, we compared the amplitudes and phases of FCN
obtained in this workwith the result fromKrásná et al. (2013)
using the same 4-year sliding windows. We must notice that
Krásná et al. (2013) has used a different version of EOP
solution about IAU2006/IAU2000A and another method to
extract the parameters of FCN. But we have found the similar
magnitude and running phases, except for a constant phase
shift, as shown in “Appendix”, which could be attributed
to the different in the reference date of the initial value. It
also suggests that the small differences between the nutation
residuals computed w.r.t. IAU2006/IAU2000A and Fits20
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Table 5 On the one hand, we computed the Fourier transform with the
complex series of (dX + idY ); there are three peaks in the spectra

Method T1 (days) T0 (days) T1 (days)

FFT (dX + idY ) −397.9 −421.7 −448.7

Resonance and beating −405.1 −430.0 −458.1

On the other hand, as if assuming that it exists, the unknown modes is
beating with the FCN. From a linear approximation, we can derive the
beating period δ = 2π

|ω0−ω1| , given the modulation period δ is 7010 days
(19.1years) estimated from the modulus of FCN with the T0 = −430
days, then the T1 has two possible solutions (this Table). From the same
analysis, we can get the modulation period from the FFT results by
assigning T0 = −421.7 days; if it beats with the shorter period will
results a modulation period about 7008 days and with the longer period
is 7050 days

are averaged out when we use the sliding windows to find the
amplitude and phase of FCN. We also computed the power
spectral density using the complex series dX + idY gener-
ated from the corrected IERS and IVS nutation residuals (see
“Appendix”). We can identify three peaks in the spectra cen-
tered at the period of −397.9, −421.7 and −458.1 days (see
Table 5). This is not in an agreement with the value deter-
mined from the resonance analysis, which is also reported by
Vondrak et al. (2005).

The excursion of the eigenfrequency of FCN ω f are
twofold: (1) either it could be due to the dynamic flattening
of the core (Dehant et al. 2017) based on a hydrostatic or non-
hydrostatic earth model with a 7.0% ω f reduction of FCN
eigenperiod in the latter case or (2) the other plausible cause

is the dynamo of the Earth, but a rough estimation has found
several ppm changes in ω f needs a 20% modulation of the
geomagnetic field,which is far from the reality. The nonlinear
normal mode forcing could originated from the atmosphere
and ocean. It could also originate from a transversal forcing
from the fluid that, if existing, could enhance the beat and
damping of the FCN. However, an increase of one order of
magnitude in the decay rate ζ , which is only accounting for
maximum a dozens ppm of ω f shifting, translates to about
several days difference in the eigenperiod.

The modulus of FCN is continuously decreasing, it took
11.2 years to reachminimum.The value is increasing steadily
and reaching another peak in 12.3 years. The 3D plots of the
mode looks similar to the largest and longest 18.6 years nuta-
tion (Fig. 8). Assuming it exists another resonancemodewith
an eigenperiod close to FCN, then the modulation period due
to the beat of two close modes should be around 19 years,
which is close to the 18.6 years nutation. Based on the non-
linear theory, the period of modulations depends also on the
coupling between two resonant modes besides on the differ-
ence in linear frequencies. In addition, when the source of
excitation behaves nonlinear, it will lead to much wider pos-
sibilities of mode interaction. In general, the engienfunctions
of the modes involved are important for both linear and non-
linear coupling. Van Hoolst (2005). However, we may try to
mimic the modulation from the linear approximation, which
is the modulation period δ = 2π

|ω0−ω1| . Let one eigenmode
centered at the −430 days, assuming a beat period δ = 7010
days, we can find another two possible candidate periods
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Fig. 8 The dX and dY are plotted together in a 3D coordinate. The z-axis shows the time revolution of the long-period 18.6 years nutation and the
FCN of the same period
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Fig. 9 Left, the celestial pole offset (CPO) dX; right, that for dY. The
residuals of the CPO were computed w.r.t. the IAU2006/IAU2000A
precession nutation model, and three solid lines separated the plot into
four blocks. The first block contained the residuals computed by using
CALC/SOLVE software, the second block contained those computed

by using OCCAM software, the third block contained those computed
with SteelBreeze software, and the last one contained the combined
solutions by IVS and IERS. For a better demonstration of the CPO
residuals, a constant amplification factor 5 was applied to the overall
residuals and different offsets were added to all except ASI sets

given in Table 5. The short and long periods are −397.9 and
−458.1 days, respectively. It is interesting to notice that these
two modes are close to the values obtained from the Fourier
transform, which hints that the modulation in Afcn could be
due to the interference of multiple closing eigenmodes.

If it is the case, the gaps in the FCN’s eigenperiod esti-
mation between the direct analysis (Vondrak et al. 2005) or
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Fig. 10 The PSD was computed with the complex number (dX + idY )
constructed with the IERS and IVS solutions

de-convolutions method by Chao and Yikai (2015) and the
indirect resonance (Hinderer et al. 2000; Dehant et al. 2003)
one could be closed. The modeling of the nonlinear reac-
tions of the free mode to an external driving mechanism will
improve our knowledge about the coupling and viscosity of
the core, which will in turn benefit a better understanding
the various transient events, such as the geomagnetic jerks,
which has been suggested by several studies (Vondrak et al.
2005; Shirai et al. 2005;Malkin 2013); the FCN’s parameters
may be sensitive to this sudden acceleration of the fluid core
manifested as the geomagnetic jerks. However the polar form
of the complex expression of FCN showed in Fig. 5 seems
to confirm such a correlation, but a physical mechanism of
excitation remains absent.
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Fig. 11 We used different windows to fit the amplitude of sine and cosine of the FCN. In order to increase the time resolution, one day sliding step
is adopted. The result shows the small oscillation are step by step removed by increasing the length of the window
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Fig. 12 The FCN magnitude
and phase were calculated from
the 4-year sliding windows (a);
it is compared with results
published by Krásná et al.
(2013) (b)
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A Appendix

The 11 sets of EOP solutions are used to estimate the uncer-
tainties of the 21 nutation component are showed in Fig. 9.

We computed the power spectral density with the complex
number (dX + idY ) built from the IERS and IVS corrected
residuals (Fig. 10), which partly explains the diversity of
the eigen-period of the FCN found by different studies. One
possible interpretation about the wider δT is that the eigen-
period and phase of FCNmay be changed due to the rotation
of the Earth as indicated by Krásná et al. (2013), which hints
a splitting of the mode; however, this need be investigated
further.

We tested different window lengths starting from 2 to 8
years (Fig. 11) and compared the results with 4 years time
window (Fig. 12). The amplitude of the short-term oscilla-
tions were decreasing with the increasing of the length of the
window. The time reference is the mid point of each window.
We used a one day sliding step to track the time variation of
the mode.
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