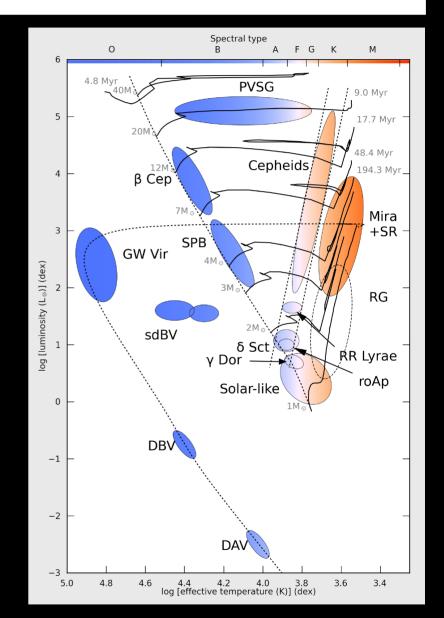
The prospects of pulsating stars studies with ILMT

Peter De Cat

Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium

... with input from Brajesh Kumar, Brijesh Kumar & Jean Surdej

The prospects with ILMT

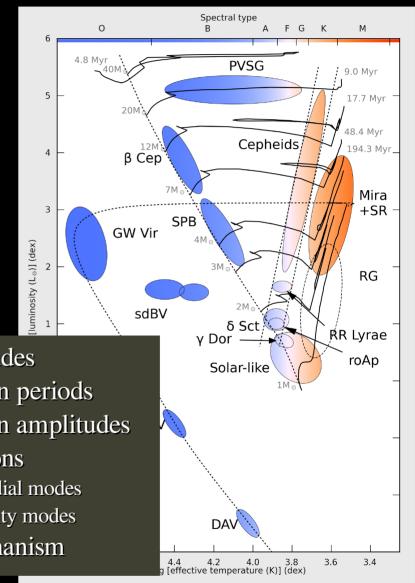


Pulsating stars studies

Different types and flavours

- x Solar-like oscillators (solar-like)
- × δ Scuti stars (δ Sct)
- × γ Doradus stars (γ Dor)
- x rapidly oscillating Ap stars (roAp)
- x β Cephei stars (β Cep)
- x Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- x Red Giant stars (RG)
- Mira variables (Mira)
- x Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- x pulsating white dwarfs (DBV/DAV)

Pulsating stars studies


Different types and flavours

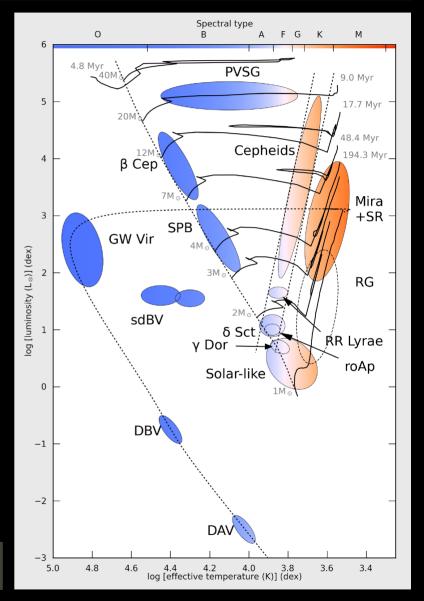
- x Solar-like oscillators (solar-like)
- \times δ Scuti stars (δ Sct)
- × γ Doradus stars (γ Dor)
- x rapidly oscillating Ap stars (roAp)
- x β Cephei stars (β Cep)
- x Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- x Red Giant stars (RG)
- Mira variables (Mira)
- x Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- pulsating white dwarfs (DBV/DAV)

typical magnitudes typical pulsation periods typical pulsation amplitudes type of pulsations

- radial/non-radial modes
- pressure/gravity modes

excitation mechanism

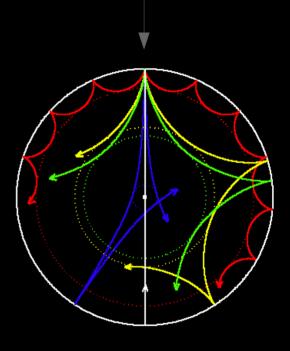
Peter De Cat



Pulsating stars studies

- Different types and flavours
- Asteroseismology
 - → science in which stellar (aster) oscillations (seismo) are studied (logy) to gain information of stars
 - * only way known to probe internal structure
 - * derive stellar parameters with unprecedented precision (R, M, age,...)
 - direct tests to modeling of complex dynamical processes in stellar interiors (e.g. diffusion, convective overshoot)
 - improve understanding of stellar evolution

Requirements?

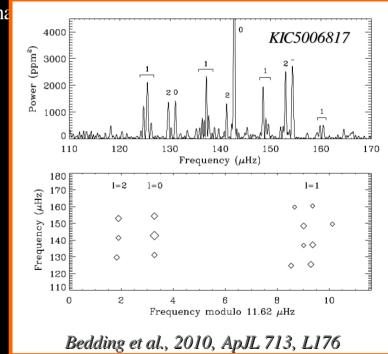


→ large number of pulsation frequencies (each frequency probes specific layer)

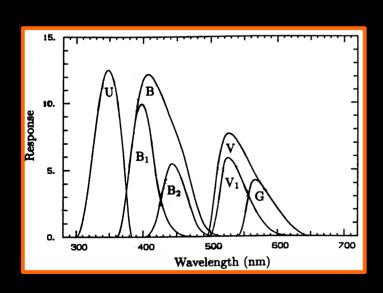
- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations

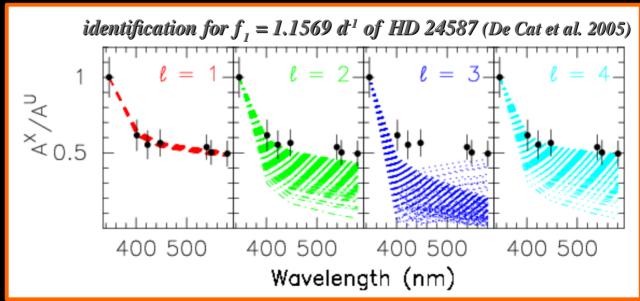
lack of color information

- number of targets: few to millions
- magnitude range: bright to faint
- field of view: few deg² to all sky
- cadence of measurements: 20 sec to sparse
- total time base: 27 days to several years

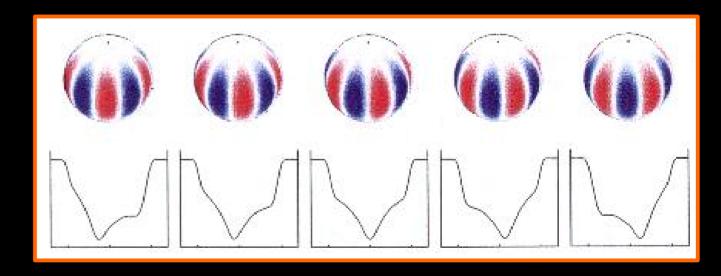

- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - **x** Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - x multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy

- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - * Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - x multi-colour photometry (amplitude ratios and pha
 - * high-resolution high-SNR spectroscopy



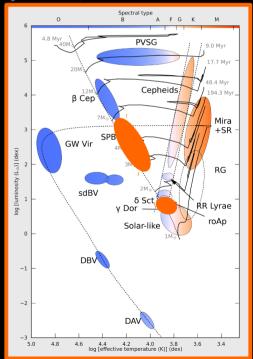


- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - * Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy



- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - * Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy

- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree l, azimuthal number m)
 - **x** Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy
- accurate stellar parameters
 - x temperature (T_{eff}), surface gravity (logg), metallicity ([M/H])
 - x projected rotational velocity (vsini)
 - * abundances



- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree l, azimuthal number m)
 - **x** Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy
- accurate stellar parameters
 - x temperature (T_{eff}), surface gravity (logg), metallicity ([M/H])
 - x projected rotational velocity (vsini)
 - x abundances

SPB and γ Dor stars

- gravity modes
- periods 0.3 3 days
- amplitudes up to 30 mmag

- → large number of pulsation frequencies (each frequency probes specific layer)
 - x time series with sufficiently long time base
 - * high-quality observations: photometry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - **x** Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * multi-colour photometry (amplitude ratios and phase differences)
 - * high-resolution high-SNR spectroscopy
- → accurate stellar parameters
 - * temperature (T_{eff}), surface gravity (logg), metallicity ([M/H])
 - x projected rotational velocity (vsini)
 - * abundances
- radial velocities can give extra constraints
 - * multiple systems
 - x cluster membership

- → large number of pulsation frequencies (each frequency probes specific layer)
 - * time strict character banalysis

 * high-quality oose various: photomytry, radial velocities, line-profile variations
- → identification of the pulsation modes (degree 1, azimuthal number m)
 - x Echelle diagram (in frequency for pressure modes, in period for gravity modes)
 - * mult violetricentsification

 * high-resolution high-SNR spectroscopy
- accurate stellar parameters
 - x temperature (T_{eff}), surface gravity (logg), metallicity ([M/H])
 - * projec Steillarity parameters
- radial velocities can give extra constraints
 - * multiple systems
 - cluster membership

For which types of pulsating stars can ILMT observations have an added value to space-based observations?

The prospects pulsating stars studies with

- Assumptions
 - → 5 years of observations: 01/01/2021 31/12/2026

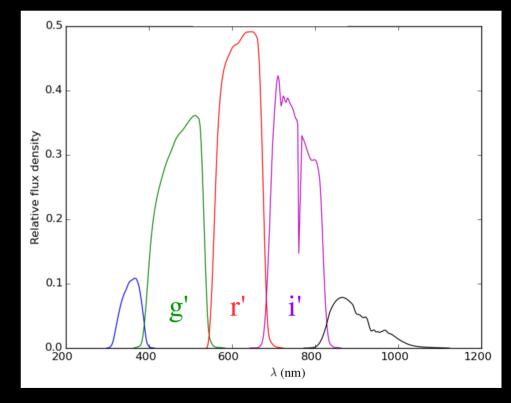
- Assumptions
 - → 5 years of observations: 01/01/2021 31/12/2026
 - → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night

Assumptions

- → 5 years of observations: 01/01/2021 31/12/2026
- → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night
- → integration time: 102 sec

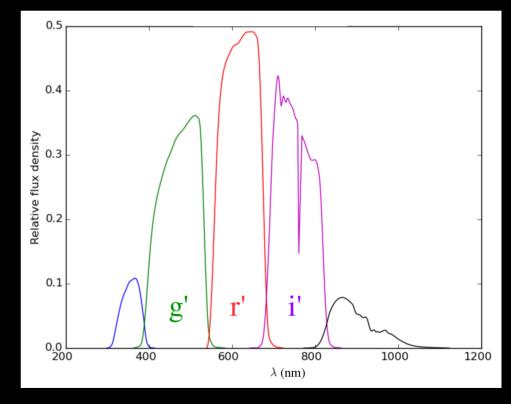
Assumptions

- → 5 years of observations: 01/01/2021 31/12/2026
- → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night
- → integration time: 102 sec



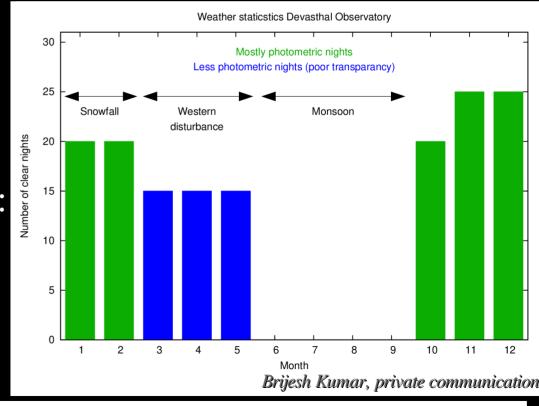
Assumptions

- → 5 years of observations: 01/01/2021 31/12/2026
- → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night
- → integration time: 102 sec
- → 3 filters: g', r', i'



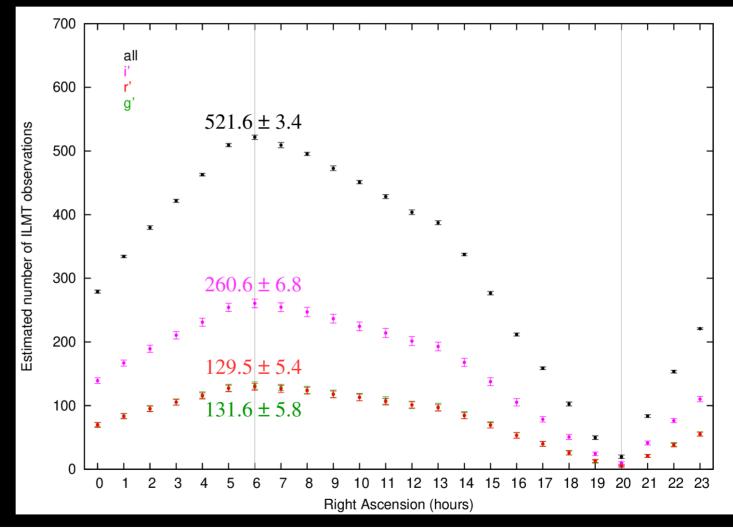
Assumptions

- → 5 years of observations: 01/01/2021 31/12/2026
- → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night
- → integration time: 102 sec
- → 3 filters: g', r', i'
- → strategy: i', g', i', r', i', g', i', r',...

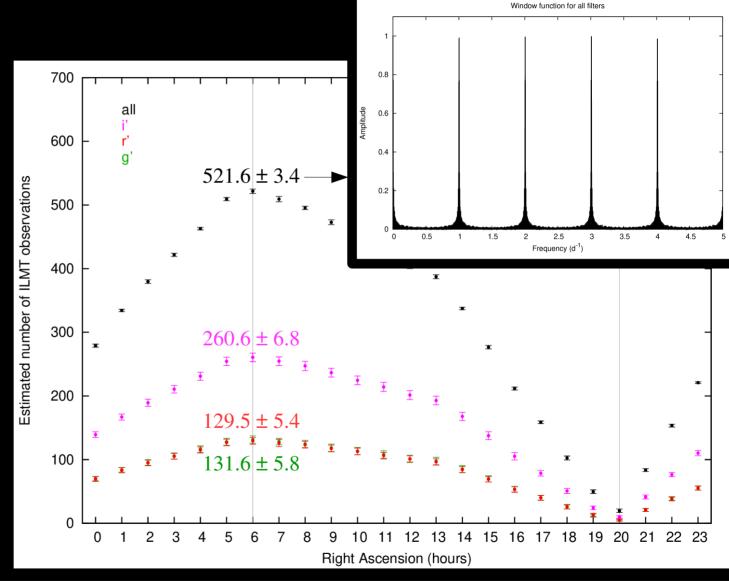


Assumptions

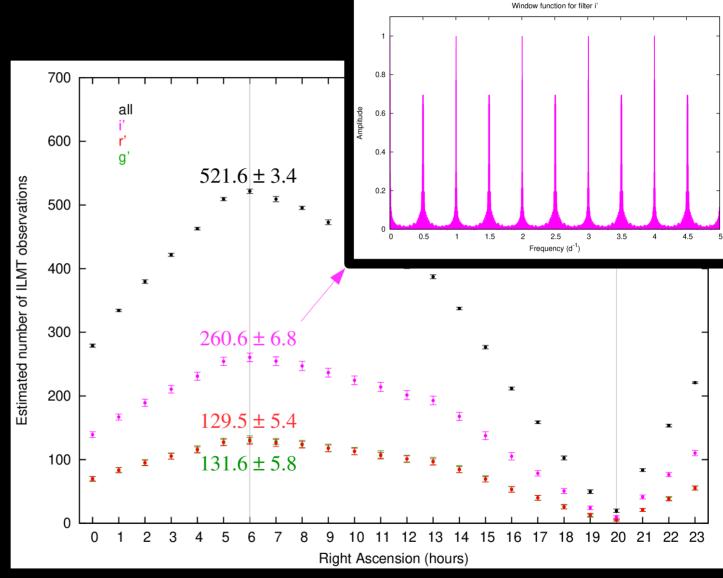
- → 5 years of observations: 01/01/2021 31/12/2026
- → targets: declination 29^h22^m26^s ± 13^m30^s passing through meridian once a night
- → integration time: 102 sec
- → 3 filters: g', r', i'
- strategy: i', g', i', r', i', g', i', r',...
- → weather statistics Devasthal:
 - based on last 2 years
 - random selection of nights within month



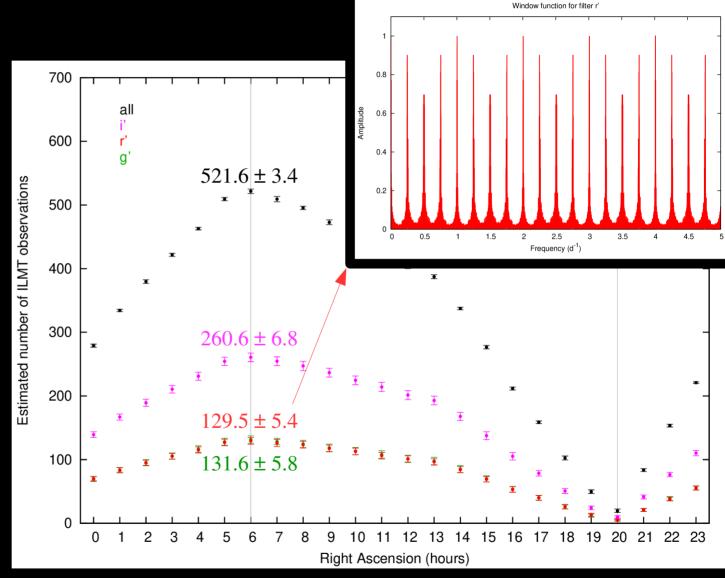
- Assumptions
- Results
 - → 100 simulations



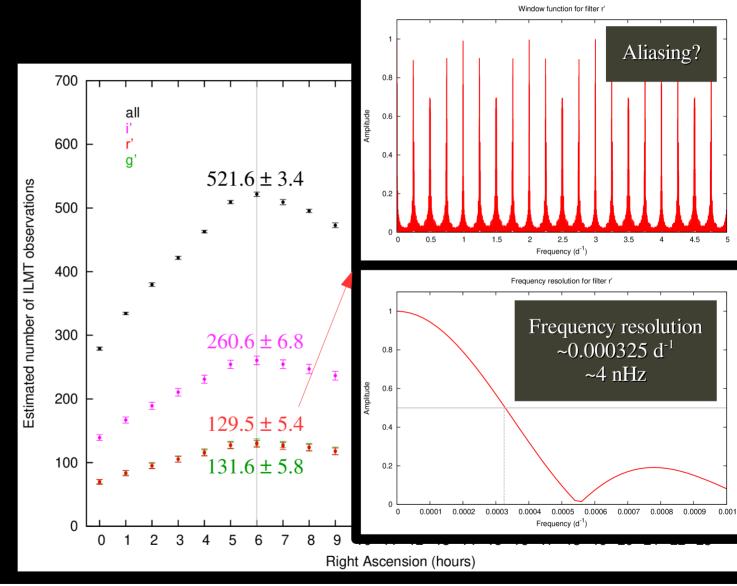
- Assumptions
- Results
 - → 100 simulations



- Assumptions
- Results
 - → 100 simulations

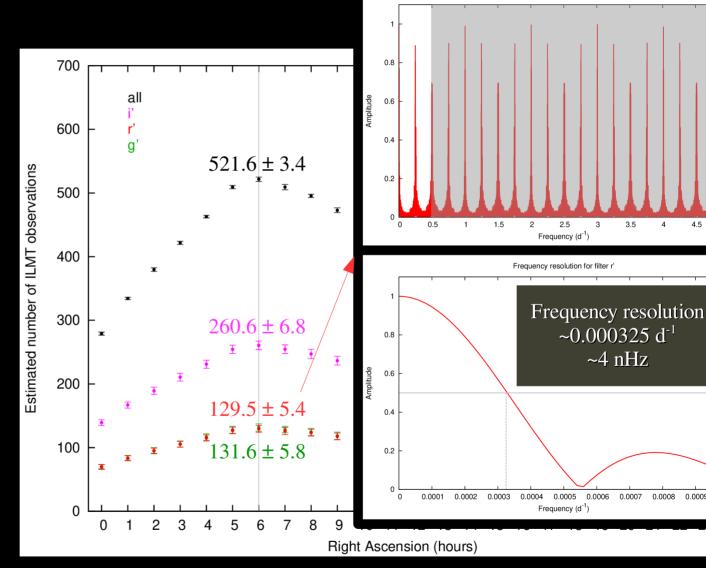


- Assumptions
- Results
 - → 100 simulations



- Assumptions
- Results
 - → 100 simulations

- Assumptions
- Results
 - 100 simulations


Lowest frequency 1/(2T): ~0.00027 d⁻¹ $\sim 3 \mu Hz$

Longest period: ~10 years

Nyquist frequency 0.5f_s: ~0.50137 d⁻¹ $\sim 5.8 \, \mu Hz$

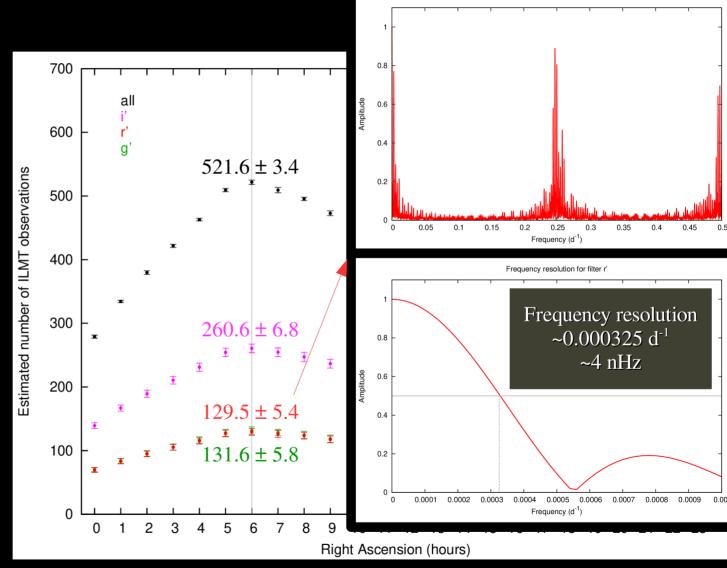
Shortest period: ~2 days

2 days – 10 years

Window function for filter r

~0.000325 d⁻¹ ~4 nHz

- Assumptions
- Results
 - → 100 simulations


Lowest frequency 1/(2T): $\sim 0.00027 \text{ d}^{-1}$ $\sim 3 \mu Hz$

Longest period: ~10 years

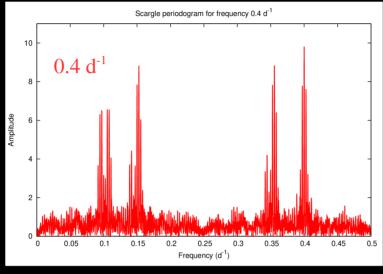
Nyquist frequency $0.5f_s$: $\sim 0.50137 \text{ d}^{-1}$ $\sim 5.8 \mu \text{Hz}$

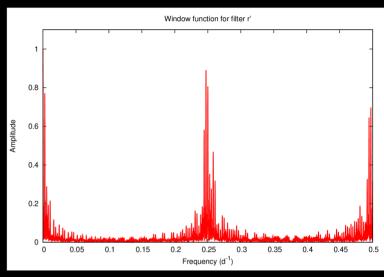
Shortest period: ~2 days

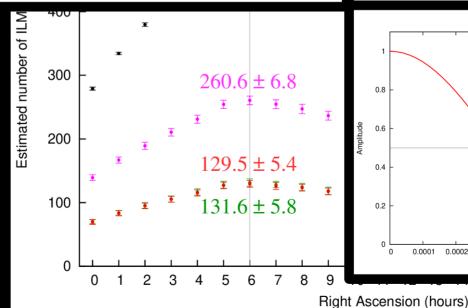
2 days – 10 years

Window function for filter r'

- Assumption
- Results
 - 100 simulation

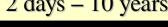

Lowest frequency 1/(2T): ~0.00027 d⁻¹ $\sim 3 \mu Hz$


Longest period: ~10 years


Nyquist frequency 0.5f_s: ~0.50137 d⁻¹ $\sim 5.8 \, \mu Hz$

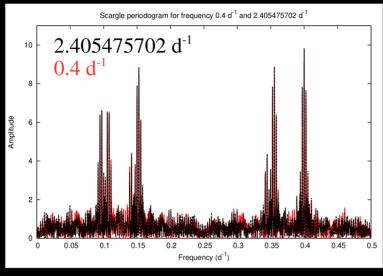

Shortest period: ~2 days

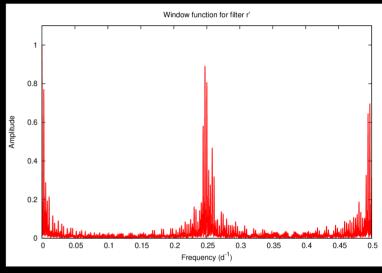
2 days – 10 years

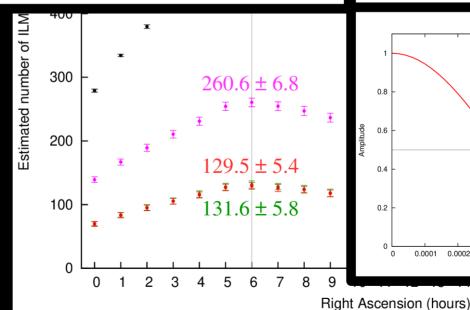


Peter De Cat

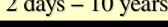
- Assumption
- Results
 - 100 simulation


Lowest frequency 1/(2T): ~0.00027 d⁻¹ $\sim 3 \mu Hz$

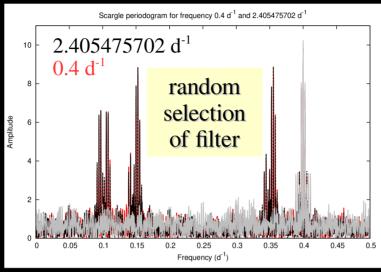

Longest period: ~10 years

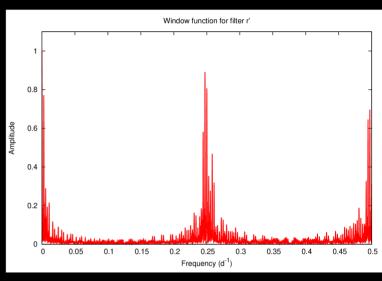

Nyquist frequency 0.5f_s: ~0.50137 d⁻¹ $\sim 5.8 \, \mu Hz$

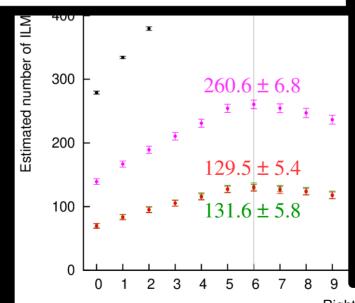
Shortest period: ~2 days

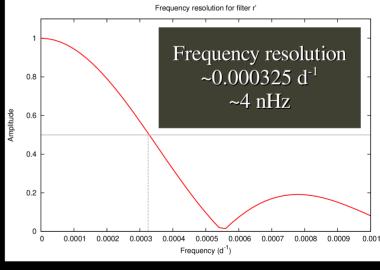

2 days – 10 years

- Assumption
- Results
 - → 100 simulation

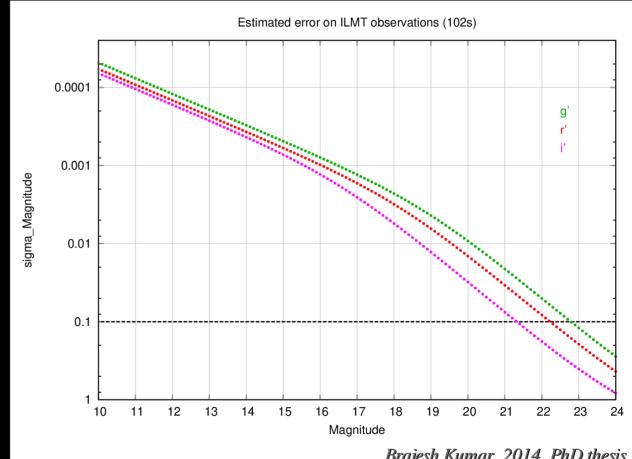

Lowest frequency 1/(2T): $\sim 0.00027 \text{ d}^{-1}$ $\sim 3 \mu Hz$


Longest period: ~10 years

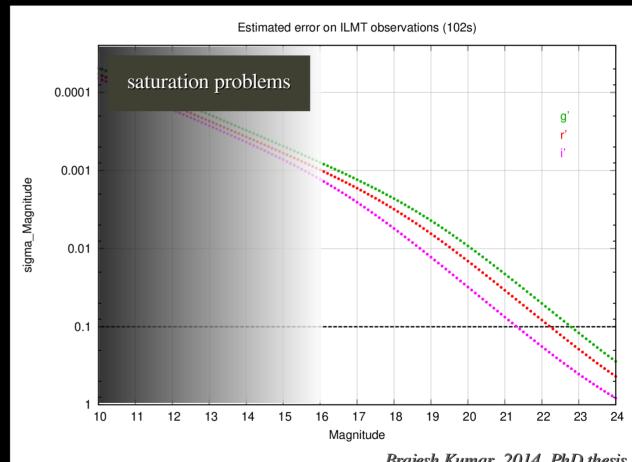

Nyquist frequency $0.5f_s$: $\sim 0.50137 \text{ d}^{-1}$ $\sim 5.8 \mu \text{Hz}$


Shortest period: ~2 days

2 days – 10 years



- Assumptions
- Results
- Error in magnitude
 - 1 observation: 102s



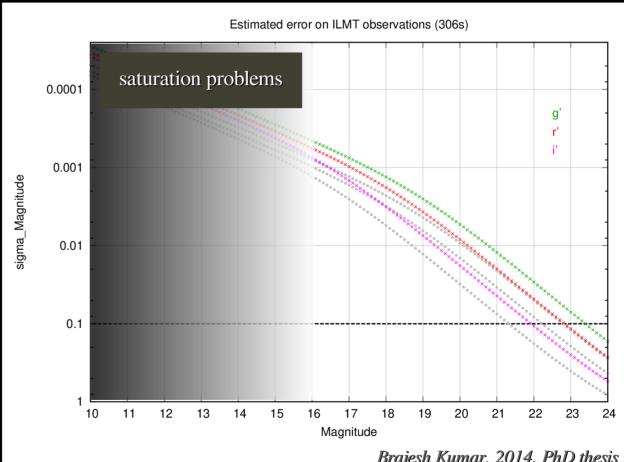
Assumptions

roughly 16 - 22 mag

> 1 mmag

- Results
- Error in magnitude
 - 1 observation: 102s

Brajesh Kumar, 2014, PhD thesis



Assumptions

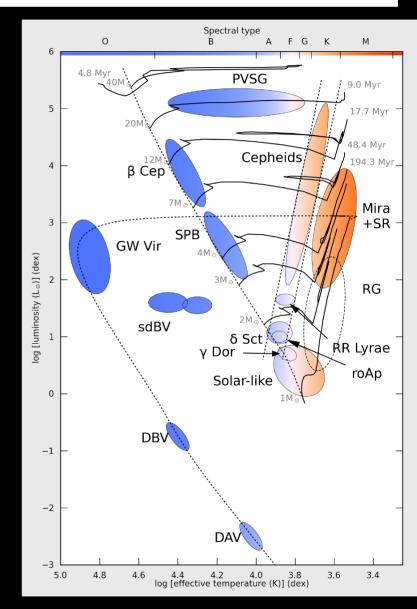
roughly 16 - 22 mag

> 1 mmag

- Results
- Error in magnitude
 - 1 observation: 102s
 - 3 observations: 306s
 - gain of ~0.5 mag
 - loss in cadence

Brajesh Kumar, 2014, PhD thesis

The pulsating stars studies with ILMT



Prospects

- x Solar-like oscillators (solar-like)
- × δ Scuti stars (δ Sct)
- × γ Doradus stars (γ Dor)
- * rapidly oscillating Ap stars (roAp)
- x β Cephei stars (β Cep)
- * Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- * Red Giant stars (RG)
- * Mira variables (Mira)
- * Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- * pulsating white dwarfs (DBV/DAV)

Peter De Cat

Frequency analysis Periods

Prospects

Periods

period > 0.5 hrs 2 days - 10 years

- Solar-like oscillators (solar-like)
- **δ** Scuti stars (δ Sct)
- γ Doradus stars (γ Dor)
- rapidly oscillating Ap stars (roAp)
- β Cephei stars (β Cep)
- Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- 🗴 RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- Red Giant stars (RG)
- * Mira variables (Mira)
- * Semi-Regular variables (SR)
- sub-dwarf B Variables (sdBV)
- pulsating pre-white dwarfs (GW Vir)
- pulsating white dwarfs (DBV/DAV)

order of min

1 - 5 hrs

0.3 - 3 d

 $5 - 25 \min$

2-7 hrs

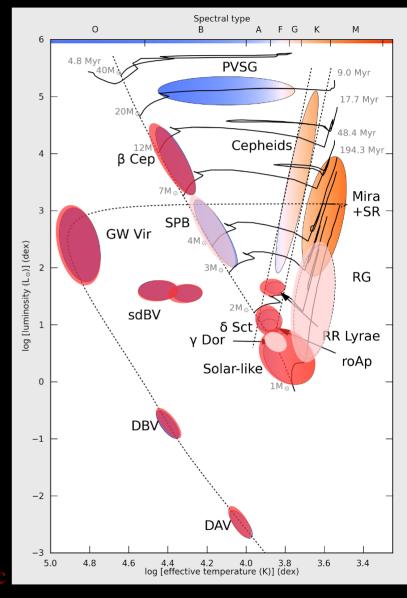
0.3 - 3 d

10 - 100 d

0.2 - 1 d

0.1 - 200 d

1 hrs - 4 d


80 - 1000 d

20 - 2000 d

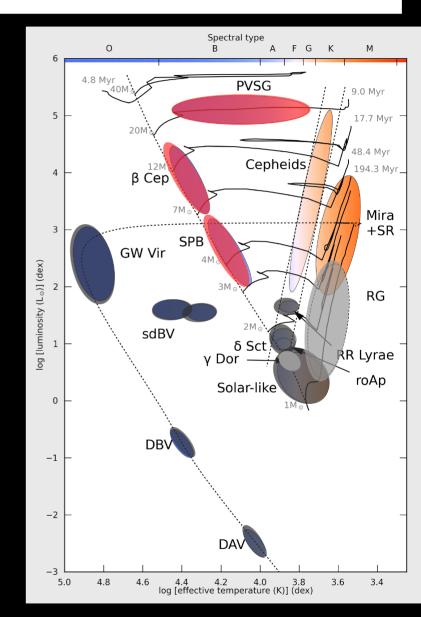
 $90 \sec - 4 \text{ hrs}$

 $5 - 85 \, \text{min}$

100 - 1500 se

Peter De Cat

Prospects


Frequency analysis

Periods Brightness

Brightness

roughly 16 - 22 mag

- x Solar-like oscillators (solar-like)
- × δ Scuti stars (δ Sct)
- \times γ Doradus stars (γ Dor)
- * rapidly oscillating Ap stars (roAp)
- β Cephei stars (β Cep)
- Slowly Pulsating B stars (SPB)
- Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- * Red Giant stars (RG)
- * Mira variables (Mira)
- * Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- x pulsating white dwarfs (DBV/DAV)

Peter De Cat

Frequency analysis

Periods **Brightness Amplitudes**

Amplitudes

> 1 mmag

Solar-like oscillators (solar-like)	20					
Solar-like Oscillators (solar-like)	X	1012 11		OTOTO	(00101	
Solution of the color of the co		141-11		ancolor a	180121	-IIKE
					Olai	

× δ Scuti stars (δ Sct)

x γ Doradus stars (γ Dor)

* rapidly oscillating Ap stars (roAp)

x β Cephei stars (β Cep)

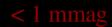
x Slowly Pulsating B stars (SPB)

* Periodically Variable Supergiants (PVS)

* RR Lyrae stars (RR Lyrae)

x Cepheids (Cepheids)

Red Giant stars (RG)

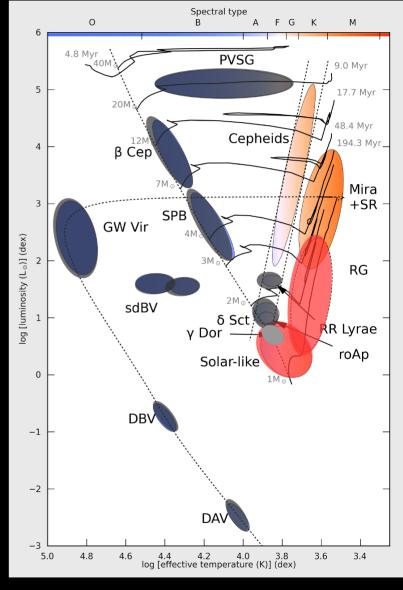

x Mira variables (Mira)

x Semi-Regular variables (SR)

x sub-dwarf B Variables (sdBV)

x pulsating pre-white dwarfs (GW Vir)

x pulsating white dwarfs (DBV/DAV)

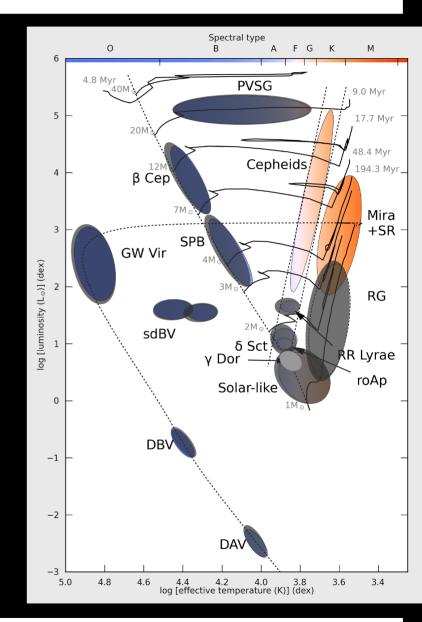


0.03 mag

1 mag

>2.5 mag

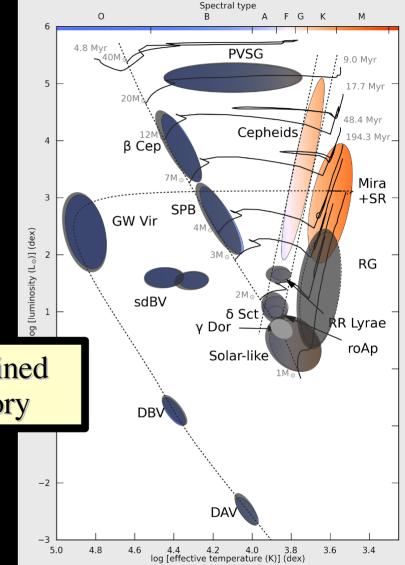
4 mag



Frequency analysis

Periods Brightness Amplitudes

- Solar-like oscillators (solar-like)
- × δ Scuti stars (δ Sct)
- \times γ Doradus stars (γ Dor)
- * rapidly oscillating Ap stars (roAp)
- x β Cephei stars (β Cep)
- X Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- * Red Giant stars (RG)
- * Mira variables (Mira)
- * Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- > pulsating white dwarfs (DBV/DAV)

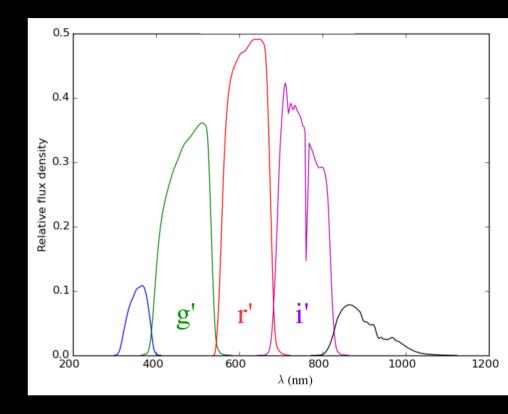

Prospects

Frequency analysis

Periods
Brightness
Amplitudes

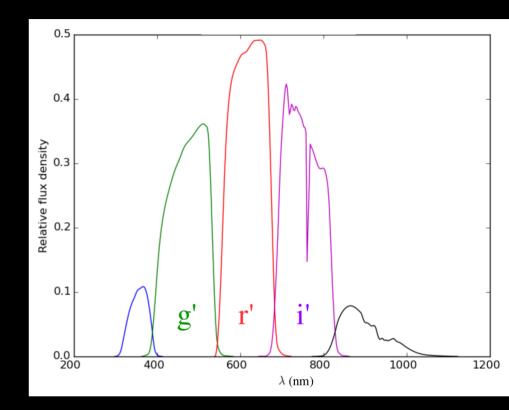
- Solar-like oscillators (solar-like)
- × δ Scuti stars (δ Sct)
- x γ Doradus stars (γ Dor)
- * rapidly oscillating Ap stars (roAp)
- x β Cephei stars (β Cep)
- X Slowly Pulsating B stars (SPB)
- * Periodically Variable Supergiants (PVS)
- * RR Lyrae stars (RR Lyrae)
- x Cepheids (Cepheids)
- x Red Giant stars (RG)
- * Mira variables (Mira)
- x Semi-Regular variables (SR)
- x sub-dwarf B Variables (sdBV)
- * pulsating pre-white dwarfs (GW Vir)
- * pulsating white dwarfs (DBV/DAV)

improves when combined with other observatory



Periods
Brightness
Amplitudes

- Mode identification
 - → method:
 - amplitude ratios
 - phase difference
 - → imposing known frequencies



Frequency analysis
Periods
Brightness
Amplitudes

- Mode identification
 - method:
 - amplitude ratios
 - phase difference
 - imposing known frequencies

- Stellar parameters
 - → calibration photometric system (low accuracy for hot stars)
 - → faint stars (first determination)
 - \rightarrow study variations of T_{eff} & $\log g$ (pulsating stars with large amplitudes)

Conclusions

- The prospects are best
 - for pulsating stars with
 - right ascension close to 6 hours
 - ► high enough magnitude (roughly 16 22 mag)
 - long pulsation periods
 - * integration time: > 0.5 hrs
 - ✗ frequency analysis: 2 days − 10 years
 - pulsation amplitudes above 1 mmag
 - → for random selection of the filter (g', r' or i')
 - if observations can be combined with other observatories

 Thank you for your attention!

Cepheids
Mira variables
Semi-regular variables

