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Abstract

We compute the inertial modes of a freely rotating two-layer planetary model with an ellipsoidal inviscid fluid core
and a perfectly rigid mantle. We present a method to derive analytical formulae for the frequencies of the free core
nutation (FCN) and Chandler wobble (CW) that are valid to all orders of the dynamical flattening of the core and
mantle, and we show how the FCN and CW are the direct generalization of the purely fluid spin-over mode and of
the Eulerian wobble to the case where the mantle can oscillate freely around a state of steady rotation. Through a
numerical computation for an axisymmetric (oblate spheroidal) planet, we demonstrate that all other inertial modes
of the steadily rotating fluid core are also free modes of the freely rotating two-layer planet.

Unified Astronomy Thesaurus concepts: Earth (planet) (439); Mars (1007); Astrophysical fluid dynamics (101);
Internal waves (819)

1. Introduction

The rotation of a planet depends on its internal structure via its
moments of inertia. In particular, the misalignment between the
rotation axis of a planet and its moment of inertia axis, along with
the misalignment between the rotation axis of a planet and of its
liquid core, give rise to two free modes of rotation known as the
Chandler wobble (CW) and the free core nutation (FCN),
respectively. In the planetary reference frame, the CW, if excited,
is a long-period prograde rotation of the instantaneous axis
of rotation around the principal axis of largest moment of inertia of
the planet, while the FCN, if exited, is a retrograde motion of
nearly diurnal frequency around the same axis.3 When taking the
gravitational pull on the planet from the Sun, the moon, and
other planets into account, these two modes can resonantly amplify
the planet’s forced nutation. Concerning the Earth, nutations are
observed by using very long baseline interferometry and modeled
precisely, accounting for deformation and coupling mechanisms at
the core–mantle boundary (CMB) such as pressure and electro-
magnetic couplings. A solid deformable inner core inside the liquid
core is also accounted for; see, e.g., Dehant & Mathews (2015).
Concerning the planet Mars, which possesses precession and
nutations as well, the joint efforts of the current RISE (Folkner
et al. 2018) and future LaRa (Dehant et al. 2020) lander missions
aim to detect such amplification in the nutation signal of Mars
measured directly from its surface. Such a detection would allow
an estimate of Mars’s FCN frequency, from which Mars’ polar
moment of inertia can be deduced; this can then be used to build
radial profiles of the density structure of the planet, and in
particular constrain its core size (Dehant et al. 2020). Usually, such
a computation is based on the formalism of Sasao et al. (1980)
in which the rotational dynamics of the fluid core is described
in terms of its angular momentum, which is assumed to be
proportional to a mean flow resembling a solid-body rotation (see

Section 2.3). This has a couple of important advantages, such as
that of being easily adaptable to accommodate the existence of a
nonrigid (elastic) mantle. However, as we show in the present
work, it is, by design, valid only to first order in the planet’s
dynamical flattening parameters. This casts doubts on the results of
previous studies attempting to push the formalism of Sasao et al.
(1980) beyond first order to evaluate the effects of trixiality (Van
Hoolst & Dehant 2002; Chen & Shen 2010; Dehant & Mathews
2015; Shen et al. 2019; Guo & Shen 2020).
In addition to the FCN and CW, the liquid core of a rotating star

or planet is known to support the existence of oscillations known
as inertial modes caused by the restoring effect of the Coriolis
force. Experimental studies in laboratory have shown that these
inertial modes can be excited by the action of tidal deformation at
the fluid boundary; see, e.g., Malkus (1968), Aldridge & Toomre
(1969), Kelley et al. (2007), and Morize et al. (2010). However,
the role of the inertial modes on the rotation of planets and other
astrophysical objects remains unclear. The main reason for this
being that most studies, so far, have focused on the response of the
fluid core in situations where the rotation of the planet is
prescribed, i.e., known a priori. Therefore, they have disregarded
the action of the fluid core on the rotation via the forces acting at
the CMB; see Le Bars et al. (2015) for a review. In a previous
work, we included the action of the fluid core on the free rotation
of a two-layer planet with a viscous liquid core (Triana et al. 2019).
We showed that the FCN and CW naturally emerge among the
spectrum of inertial modes and that complex interactions between
the eigenmodes take place when the moment of inertia of the
mantle varies. Due to the difficulty in dealing with both the
presence of a thin viscous boundary layer and the ellipticity of the
CMB, we could not explore the regime of very low viscosity
relevant to planetary and astrophysical objects.
In the present work, we complement the analysis of Triana

et al., focusing specifically on the effects of the pressure torque
between the fluid core and the solid mantle. We do so by
computing the free modes of rotation of a two-layer ellipsoidal
planet model with a perfectly rigid mantle and an inviscid fluid
core. When one sets the viscosity of the fluid to zero, the
viscous boundary layer at the CMB and the various shear
layers that it generates inside the core disappear and the flow
pattern inside the core becomes smooth. This enables us to

The Planetary Science Journal, 1:20 (11pp), 2020 June https://doi.org/10.3847/PSJ/ab93c8
© 2020. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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derive the free modes of rotation at all values of the core and
mantle’s ellipticities.

Previous studies have attempted to mathematically model the
rotational modes of a terrestrial planet based on the displace-
ment field approach whereby the motion of the core and mantle
are computed using the set of gravito-elastic equations that
follow from the local conservation of momentum (Smith 1974,
1977; Rogister 2001; Rochester et al. 2014; Seyed-Mahmoud
et al. 2017). However, these are limited to considering planetary
models that are only slightly aspherical. There is also some
doubt regarding the ability of these works to adequately capture
the effects of the presence of a solid inner core, which is known
to generate singularities within the displacement field (Rieutord
et al. 2000).

This work is structured as follows. In Section 2, we present
the two-layer planet model and its equations of motion. We
then consider the special case of a core flow with a uniform
vorticity and derive analytical formulae for the FCN and CW
frequencies. In Section 3, we numerically compute the inertial
modes of a two-layer planet with an axisymmetric CMB using
the set of oblate spheroidal coordinates, and compare the value
of the FCN frequency to the analytical expressions of Sasao
et al. (1980) and our own formalism. Results are discussed in
Section 4.

2. Model

Figure 1 represents the planetary model used throughout this
work. The usual way to compute the rotation of this two-layer
model is via the system of equations expressing the conserva-
tion of angular momentum for each layer. In the reference
frame attached to the mantle rotating at angular velocity Wm
relative to the inertial frame, and in the absence of external
forces, these read:

( )W G¶ + ´ =L L , 1t m m m

( )W G¶ + ´ = -L L , 2t c m c

where Lc and Lm denote the angular momentum of the core and
mantle, respectively, and G represents the total torque that the
fluid core exerts on the mantle. All these quantities are
measured relative to the inertial frame. In the absence of other
external torques, this must be balanced by the torque from the
core on the mantle. The addition of Equations (1) and (2) then
yields:

( )W¶ + ´ =L L 0, 3t m

where º +L L Lc m is the total angular momentum of the
planet. Traditionally, one chooses to solve Equations (2) and
(3). The difficulty then lies in the determination of G, which
expresses the coupling between the core and the mantle. For the
case of a perfect fluid with zero viscosity and in the absence of
magnetic field, the only contribution comes from the pressure
forces at the CMB, which give rise to the pressure torque:

∮ ˆ ( )G = ´r nP , 4
CMB

where P is the pressure inside the fluid and r is the position
vector. The integration runs over the whole surface of the
CMB, and n̂ denotes the radially outward normal vector to this
surface. In principle, one should add the increment of gravity
resulting from the change in the repartition of mass to
Equation (4). In our simple model, however, this contribution
is zero, as the distribution of masses is kept constant due to the
perfect rigidity of the mantle and the incompressibility of the
fluid core. Sasao et al. (1980) have shown how to avoid the
computation of the pressure torque explicitly by replacing
Equation (2) with an equation involving the mean rotation of
the fluid. This approach, however, is only valid in the limit of
small flattening of the CMB (see Section 2.3). In the present
work, we use a different approach based on the equation giving
the evolution of the flow inside the fluid core. In the special
case where the flow vorticity is spatially uniform, the problem
reduces to determining the evolution of the components of the
vorticity in time. We can do so analytically by working from
the equation of vorticity (the curl of the momentum equation)
in a way that is formally similar to the formalism of Sasao et al.
but has the advantage of being valid for all values of the
flattening.
In the remainder of this section, we present the equations

governing the dynamics of the fluid core coupled to planetary
rotation. We then present their analytical resolution in the
special case of a flow with uniform vorticity and provide a
comparison to the formalism of Sasao et al.

2.1. Equations for a General Flow

We focus on the small departures of the flow from a solid-
body rotation and write:

( )W= ´ +v r u, 5m

where v and u denote the velocity field measured in the inertial
frame and the mantle frame, respectively. Assuming that the
fluid is incompressible and has zero viscosity, the equation of
motion in the mantle frame and to first order in u reads (Triana
et al. 2019):

( )W W ¶ + ´ + ¶ ´ = -u u r p2 , 6t tm m

Figure 1. Two-layer planet model with an ellipsoidal core and surface.
Cartesian basis {ˆ ˆ ˆ}x y z, , is aligned with the principal axes of inertia of the core
and the rigid mantle. Here, Wm is the rotation vector of the mantle relative to
the inertial frame of reference and is related to the polar figure axis, ẑ , by
Equation (9), where ∣ ∣ m 1.
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where ρ denotes the fluid density and we have identified the
reduced pressure, p, as:

∣ ∣ ( )
r

Wº - ´ rp
P 1

2
, 7m

2

where the second term represents the centrifugal potential—
which, in the absence of external forces, is the only
contribution to the total potential. The flow must satisfy the
no-penetration condition at the CMB:

· ˆ ∣ ( )=u n 0. 8CMB

In this work, we focus on the small oscillations of the planet
about a steady rotation, whereby Wm can be decomposed as:

(ˆ ) ( )W = W +z m , 9m 0

where the Cartesian basis vector, ẑ, is chosen as the mean axis
of rotation (see Figure 1) and we have ∣ ∣ m 1. In what
follows, we set W = 10 for simplicity, which amounts to
measuring frequencies in cycles per day. As we are looking for
solutions that are oscillatory, we use the following Fourier
decomposition:

( )= +w w-u u ue e , 10i t i t*

( )= +w w-p p e p e , 11i t i t*

( )= +w w-m m me e , 12i t i t*

where a * denotes the complex conjugation and where we have
used the same symbol to denote a quantity and its Fourier
component at frequency w+ for simplicity. Inserting
Equations (9) and (10)—(12) into Equation (A1), keeping
terms up to first order in m and u yields:

ˆ ( ) ( )w w + ´ + ´ = -u z u m ri i p2 , 13

ˆ ( ) ( )w w - + ´ - ´ = -u z u m ri i p2 . 14* * * *

From Equation (13), we can isolate u and express it in terms of
in terms of p and m only. Upon using the incompressibility
condition ( · =u 0), and the condition of no-penetration
Equation (8), we then arrive respectively to (see Appendix A):

(ˆ · ) (ˆ · ) ( )w  - + = -z z mp p4 4 , 152 2 2

which is valid inside the whole core, and

( )

· ( ( )) ( )·
( ( )) ( · ) · ( ( ))∣
w w w

w w


 
- + ´ + ´

+ ´ + + ´ =
16

n m r z n
m r z n z m r
p i i

p i p i

2

4 0,

2

CMB

^ ^ ^
^ ^ ^

which must be satisfied at the CMB. When the mantle is in steady
rotation, one has =m 0. Equation (15) then reduces to the well-
known Poincaré equation, the solutions of which are global
oscillations of the flow called inertial modes and their frequencies
satisfy w- < <2 2 (see, e.g., Section 8.3.3 of Rieutord 2015). In
his classic paper, Bryan (1889) gave the general analytical implicit
expression of the inertial modes frequencies for an axisymmetric
ellipsoid (those are reproduced in Appendix A). His work was
later extended by that of Hough (1895) to the geometry of the
triaxial ellipsoid. In both cases, the pressure field associated with
each mode can be represented as a polynomial function in the
Cartesian coordinates (Kudlick 1966; Zhang et al. 2001;
Vantieghem 2014; see also Rekier et al. 2018). The inertial mode
of lowest degree is called the spin-over mode (SO), and when

observed from the mantle frame, its flow resembles a solid-body
rotation around an axis perpendicular to the rotation vector of the
mantle. It is the only inertial mode that carries a net amount of
total angular momentum when integrated over the whole core; it is
therefore especially important for rotation, as we show later.
In order to obtain the evolution of m, we must use

Equation (1) and express the angular momentum of the mantle
in terms of its tensor of inertia, Im, and its angular velocity:

· ( )W=L I . 17mm m

To obtain the right-hand side of Equation (1), we must write the
pressure torque Equation (4) in terms of the reduced pressure,
p, and the increment of angular velocity m. From the definition
of Equation (7), one has, to first order in m:

⎜ ⎟⎛
⎝

⎞
⎠∣ ∣

∣ˆ ∣ (ˆ ) · ( ) ( )

r

r
r

r

W= + ´

» + ´ + ´ ´

r

z r z r m r

P p

p

1

2

2
. 18

m
2

2

In Section 3, we numerically solve Equations (1), (15), and (16)
for an axisymmetric oblate ellipsoidal fluid core using a set of
oblate spheroidal coordinates, in a manner similar to what we
presented in Rekier et al. (2018). In the remainder of the
present section, we focus on the special case where the flow
inside the core has a uniform vorticity for which the free modes
of the two-layer planet can be computed analytically.

2.2. Flow with a Uniform Vorticity

In his classic paper, Poincaré (1885) looked for solutions of
the fluid flow in an ellipsoid characterized by a spatially
uniform (yet possibly time-dependent) vorticity. Denoting this
vorticity as  ´ =u w2 , the velocity field, u, is written as:

( ) ( )y= ´ +u w r , 19

where ψ is explicitly expressed in terms of w and the ellipsoid
dimensions (a, b, c). This scalar function is there to adjust the flow
to the no-penetration boundary condition Equation (8) and is zero
for a spherical core. The explicit expressions of u and ψ are given
in Appendix B. We obtain the equation giving the time evolution
of the vorticity by taking the curl of Equation (A1):

· ( )W  W¶ - + ¶ =w u 0. 20t tm m

This has the advantage of making the gradient of pressure
vanish and the whole influence of the mantle on the fluid core
is accounted for entirely via the variations of Wm. Under the
assumption of uniform vorticity, the computation of the fluid
flow inside the core reduces to the resolution of Equation (20)
for the three Cartesian components of w. In order to obtain the
coupled motion of the core and mantle, we must add another
equation giving the evolution of Wm. We choose to use
Equation (3), as it does not require any explicit computation of
the torque at the CMB. It does, however, require us to evaluate
the angular momentum of the whole planet relative to the
inertial frame, L. Using Equation (5), this is written as:

( ) · ( ) ( )ò rW= + + ´L I I r u , 21c m m
core

where the first term is proportional to the total tensor of inertia
of the whole planet and the integral runs over the whole volume
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of the core. As the mantle is taken to be perfectly rigid, we can
always chose the coordinates of the mantle frame to be aligned
with the principal axes of inertia of the core and mantle at all
times, and parameterize the tensor of inertia as:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

        

= +
A

B
C

A

B

C

A
B

C

0 0
0 0
0 0

0 0

0 0

0 0

0 0
0 0
0 0

. 22

I
I I

f

f

f

m

m

m

c m

In Appendix B, we give the explicit expressions of the
components of the core angular momentum. In what follows,
we parameterize the moments of inertia in terms of the
following dynamical flattening parameters (see p.154 of
Dehant & Mathews 2015):

( )a bº
-

º
-

+

+

+

C B A

B A
, , 23f

f
A B

A B f
f f

f f

2

2

f f

f f

for the fluid core and

( )a bº
-

º
-
+

+

+

C B A

B A
, , 24

A B

A B
2

2

for the whole planet.
As we are interested in the small oscillations of the flow

around the axis of rotation, we write, in analogy with
Equation (12) and consistent with the notation of Sasao et al.
(1980):

( ) ( )= +w w-w m me e , 25f
i t

f
i t*

and we assume ∣ ∣ m 1f . The system of Equations (3) and (20)
in the first order in m and mf can be put in the following matrix
form from which the components of these vectors in the z-
direction decouple completely:

The problem of finding the free-mode frequencies, ω, then
reduces to solving the polynomial equation, which results from
imposing:

[ ] ( )=Mdet 0. 27

This polynomial equation is in fact biquadratic in the
frequency ω, and so its roots come in pairs that have the same
magnitude and opposite signs. The set of individual modes
associated with each root can be classified into prograde and
retrograde motions (relative to the mean planetary rotation). In
the end, there are only two independent physical motions, as a
prograde (respectively retrograde) mode of frequency ω<0 is
equivalent to a retrograde (respectively prograde) mode of
ω>0. Here, we follow the convention of Dehant & Mathews
(2015) and others, and represent the retrograde modes using
negative frequencies.
The explicit expressions of the two independent frequencies

are too lengthy to reproduce here. Instead, we provide the
expressions of their Taylor expansions in the dynamical
flattening parameters:

We identify these frequencies as those of the FCN and CW,
respectively. The former presents a nearly diurnal retrograde
nutation as measured in the planetary frame of reference. The
latter is a prograde nutation of small frequency (and thus long
period) in that same frame.
In anticipation of the next section, we now turn to the special

case where the planet and its liquid core are axisymmetric
around the mean rotation axis, ẑ. In such a case, b b= = 0f
and Equation (26) can be further simplified in terms of the
following variables:

( ) ( ) ( )= - + = ++ -m m im m m im
1

2
,

1

2
, 30x y x y

and analogous expressions for the components of mf . These
new variables are the components of m in the Cartesian
canonical basis; see, e.g., p. 193 of Trinh (2019). The equations

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )

( )
( )

( )( )
( )

( )( )
( )

( )
( )

( )( )( )
( )( )

( )( )( )
( )( )

( )
( )

( )
( )

  

w
a b

b
a a b

b
w

a a b

b

a b
b

w
b a a b

b b
b a a b

b b
w

w w
a b

b

w
a b

b
w

-
-
-

- + -

-

- + +

-

+
+

-
- - + -

+ -

- - + +

+ -

+ +

+

-
+ -

-

= 26

i A

A

iA

A

i iA

A

A

A

i

i

m
m
m

m

1

1 1 2

1

1 1 2

1

1

1 1 1 2

1 1

1 1 1 2

1 1

0
1 2

1

0
1 2

1

0

f f f f

f

f f f f

f

f f f f

f

f f f f

f

f f

f

f f

f

M

x

y

f
x

f
y

2 2

2 2

( ( )( ) ( ) ( ) )
( )w

a a b a a b b
=- - +

+ - - - - -
+

A

A

A A A A A A A

A
1

2 2 4

2
..., 28

f

m

m f m f f m f

m

2

2

∣ ∣ ∣ ∣ ( )( )
( )w

a b a b b a b
=

-
-

- - + -
+

A

A

A A A

A
.... 29

m

m f f

m

2 2 2 2

2
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for +m and +mf on the one hand, and for -m and -mf on the
other hand, decouple completely. Thus, we end up with:

⎜ ⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

( )
( )

( )
( )

w a w

w w a

- +

+ +
=

a- -
-

m
m

1

1
0. 31

A

A

f
f

1f f
2

Setting the determinant of the above matrix to zero gives the
following two independent frequencies:

By taking the series expansion of Equation (32) in α and αf,
assuming that these two parameters are small quantities of the
same order, one recovers more familiar expressions for the
FCN and the CW in the axisymmetric case:

( )

( ) ( ( ))
( )

w
a a a

a a a a a

=- - +
-

-
- - + +

+

A

A

A A A

A

A A A A A

A

1

..., 33

f

m

m f

m

m f m f f

m

2

2

3

( )

( ) ( ( ))
( )

w
a a a

a a a a a

= -
-

+
- - + +

+

A

A

A A A

A

A A A A A

A
.... 34

m

m f

m

m m f f f

m

2

2

3

From Equation (33), one sees that the FCN has an exactly
diurnal frequency in the case where the fluid core is spherical
(αf). This is true to all orders in α and αf, as can be shown by
working directly from Equation (32). From Equation (34), we
see that the frequency of the CW remains proportional to the
dynamical flattening of the whole planet, α, in that same limit.
In Section 3, we demonstrate the validity of Equation (32) by
comparing it to the result of a direct numerical integration of
Equation (15). We also provide a comparison to the formula
obtained using the formalism of Sasao et al. (1980), to which
we now turn.

2.3. The Inertial Torque Approximation

Rather than working directly from the vorticity
Equation (20), most studies prefer to compute the motion of
the fluid core from the conservation of angular momentum. In
theory, this amounts to solving Equation (2), which requires the
computation of the pressure torque contribution Equation (4) to
G. In practice, however, Sasao et al. (1980) have shown how
Equation (2) can be replaced by the following:

( ) ( )¶ - ´ » L w L , 35t c T c
2

where wT denotes the angular velocity of the Tisserand frame
of the fluid core, which is defined via

· ( ) ( )W= +L I w . 36c c m T

The right-hand side of Equation (35) only involves terms that
are second-order or more in the flattening parameters αf and βf,

here assumed to be proportional to a single small parameter ò;
see p. 271 of Dehant & Mathews (2015), and p. 79 of Trinh
(2019) for more details. The usage of Equation (35) over
Equation (2) is usually referred to as the inertial torque
approximation. From the Cartesian components of the core
angular moment, one can verify that, for all considerations of
angular momentum, wT is equivalent to w to first order in the
flattening, such that the latter can be used in place of the former

in Equation (35) (Appendix B). In this approximation,
Equation (26) is replaced by:

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )( )
( )( )

( )
( )

( )
( )

w w

w w

w w

w w

-

-

-

=

a b
b

b

b

a b
b

b

b

b b

b b

a

b

a

b

-
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The frequencies, ω, derived from Equation (37) are equivalent
to those derived from Equation (26) only to first order in the
flattening parameters, α, β, αf, and βf.

2.4. The Spin-over Mode

In Section 2.2, we have seen how the FCN and CW wobble
are natural oscillations of the two-layer system when the
“wobbly” motion of the mantle is coupled to a core flow of
uniform vorticity. From Equation (26), we can illustrate the
relation between the FCN and the SO by considering the
special case where =m 0. Physically, this corresponds to the
situation where the mantle is forced to remain in a state of
steady rotation at all times. Mathematically, this amounts to
ignoring the first two rows and columns of M, such that
Equation (26) reduces to:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

( )
( )

( )
( )

w

w-
=

a b

b

a b

b

+ +

+

+ -

-

m

m
0. 38

i

i

f
x

f
y

1 2

1

1 2

1

f f

f

f f

f

This gives a single independent frequency (using the same
convention of sign as in Section 2.2):

( )
( )( )

( )w
a b

b b
= -

+ -

- +

1 4

1 1
. 39

f f

f f

2 2

Upon using Equations (C4) and (C5) expressing αf and βf in
terms of the dimensions of the ellipsoidal core (a, b, c), we
arrive at the more familiar expression (see, e.g., Equation (3.21)

( ) ( ) ( )( ( )) ( ( ) ( ))

( ( ))
( )w

a a a a a a a a a

a
= -

- - - +  + - - + - + - -

- -

A A A A A A A

A A

1 1 4 1 1 1 1

2 1
. 32

f f f f f f f f f

f f

2 2 2 2

2
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of Vantieghem 2014 or Equation (A.23) of Rekier et al. 2018):

( )( )
( )w = -

+ +

ab

a c b c

2
. 40

2 2 2 2

Note that carrying the same exercise with Equation (37) gives a
different—and incorrect—expression for the SO frequency,
which matches Equation (39) only up to first order in the
flattening parameters.

We see that, strictly speaking, the SO is a mode of the two-
layer system only in the limit where the rotation of the mantle is
steady. When this is not the case, such as in the context of
planetary nutations, the SO is replaced by the FCN. The flow
inside the core is similar for both modes, having a uniform
vorticity. The main difference is that the FCN is a combined
motion of the core and mantle. When the core is axisymmetric
(b = 0f ), Equation (39) reduces to:

( ) ( )w a= - +1 . 41f

In Section 3, we use Equation (41) to evaluate the discrepancy
between the frequencies of the SO and the FCN numerically as
a function of the core flattening, and we compare it to the
analytical expression Equation (32).

3. Results

In this section, we present the results from the direct
numerical integration of Equations (1), (15), and (16) for an
axisymmetric oblate ellipsoidal fluid core. This computation is
based on spectral decomposition introduced in Rekier et al.
(2018), in which the reduced pressure field is developed onto
the basis of spheroidal harmonics of the form:

( ) ( ) ( ) ( )å åx J j x J j=
= =-

p p Y, , , , 42
ℓ

L

m ℓ

ℓ

ℓ m ℓ
m

0
,

where { }x J j, , are the set of oblate spheroidal coordinates and
L is the degree of truncation. Rekier et al. have shown how to
use these coordinates to compute the inertial modes of a
steadily rotating axisymmetric ellipsoid numerically by using
the expansion Equation (42) and a decomposition of the pℓ m,

over the basis of Chebyshev polynomials, ( )T xk :

( ) ( ) ( )åx =
=

p p T x , 43ℓ m
k

N

k ℓ m k,
0

, ,

where N is the degree of truncation. Here, x x=x CMB denotes
the normalized ξ-coordinate and xCMB is the value of ξ at the
CMB. With an appropriate choice of normalization, xCMB is a
constant that depends only on the polar flattening. It can be
shown that the component of the pressure torque Equation (4)
in the z-direction vanishes in these coordinates, due to axial
symmetry in the azimuthal j-coordinate. The other compo-
nents in the Cartesian canonical basis reduce to:

( ) ( ) ( )p
xG =

-+
+

ia a c
P

4

5 3
, 44

2 2

2, 1 CMB

( ) ( ) ( )p
xG = -

--
-

ia a c
P

4

5 3
, 45

2 2

2, 1 CMB

where a and c are the semimajor and semiminor axes of the
core, respectively, and the ( )xP2, 1 CMB are the spheroidal

harmonics components of the physical pressure field, with
=ℓ 2 and = m 1 at the CMB. These should not be confused

with the components of the reduced pressure, ( )xp CMB , to
which they are related via Equation (18), which gives:

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )x r x= - 

P p
ac

m
3

. 462, 1 CMB 2, 1 CMB

From Equations (44) and (45), we see that the geometry of the
CMB restricts the family of flows coupled to the planetary
rotation to those with a nonvanishing =ℓ 2 and = m 1
pressure component at the CMB. In particular, this limits the
analysis to the set of modes that are antisymmetric with respect
to the equatorial plane.
Equations (1), (15), and (16) form a closed system of

equations in p and m that we solve numerically as a
(polynomial) eigenvalue problem in the frequency ω. For
definiteness, we arbitrarily assume that the two layers of the
planet have the same density and that the semimajor axes of the
fluid core and of the whole planet are in a 1/2 ratio. We also set
the exterior flattening to zero, α=0), i.e., the outside surface
of the planet is spherical. This leaves αf as the only free
parameter. In Appendix C, we provide the detailed expressions
of the different moments of inertia involved in this
computation.
Figure 2 represents the partial spectrum of eigenvalues of

modes with the azimuthal wavenumber m=1 as a function of
αf.
The blue circles are the inertial modes frequencies when the

planet is in steady rotation ( =m 0). The red dots are the same
thing for a planet with a nonsteadily rotating (wobbly) mantle
( ¹m 0). The blue dashed lines represent the analytical
frequencies of the inertial modes of a steadily rotating planet
(see Appendix A). These are labeled with the ℓ-number of their
highest-degree component. The frequencies are the same in
both cases—the only exception being the SO, which disappears
from the spectrum when the planet has a nonsteady rotation and
is then replaced by the FCN. In order to accentuate the
discrepancy in the frequencies of these two modes, we have
subtracted the SO frequency Equation (41) from all the
frequencies in the plot. The red curve represents the frequency
of the FCN computed from Equation (32), which, for α=0),
simplifies to:

( )
( )w

a

a
= - -

+ -

A

A A A
1 . 47

f

m m f
2

This is in very good agreement with the values computed
numerically, even for large values of αf. We observe that the
nonsteady rotation of the mantle has no effect on the
frequencies of the inertial modes other than the SO. This can
be confirmed by looking at the ratio of the kinetic energy
densities of the mantle and the core measured from the steadily
rotating reference frame (see Appendix D) as shown in
Figure 3.
As we can see, the ratio is strictly zero for all modes other

than the FCN. The red line corresponds to the analytical value
computed from the resolution of Equation (31) with α=0)
and with a frequency equal to Equation (47). It is in good
agreement with the numerical computation, even for large
values of the flattening.
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We can further illustrate the agreement between the numerical
and analytical computations by looking at Figure 4, which shows
the same thing as Figure 2 but focuses on the frequency of the
FCN up to very large values of the core flattening, a » 1f . The
red curve represents the frequency obtained from Equation (47)

and the dots show the numerical computation. The blue dashed
line represents the value of the frequency computed using the
inertial torque approximation described in Section 2.3, which, for

Figure 2. Partial spectrum of eigenfrequencies of the two-layer planet as a function of the polar flattening of the fluid core. Blue circles are the frequencies of the
inertial modes computed numerically for a planet in steady rotation ( =m 0). Red dots are the same thing for a planet with a nonsteadily rotating (wobbly) mantle
( ¹m 0). Eigenvalues corresponding to the frequencies of inertial modes are the same in both cases—except for the SO, which gets replaced by the FCN. Blue dashed
lines represent the analytical frequencies of the inertial modes of a steadily rotating planet (see Appendix A). These are labeled with the ℓ-number of their highest-
degree component. Red curve represents the frequency of the FCN computed from Equation (47). We have subtracted the value of the SO frequency Equation (41)
from all eigenvalues, to accentuate the discrepancy with the FCN. All frequencies in the figure correspond to modes with the azimuthal wavenumber m=1.

Figure 3. Ratio of the kinetic energy densities of the mantle and the fluid core
as measured from the steadily rotating frame. Red line corresponds to the
analytical value computed for the solution of Equation (31) with α=0) and
with a frequency given by Equation (47).

Figure 4. Frequency of the FCN as a function of the core flattening. Red dots
are the results from direct numerical integration. Red curve corresponds to the
analytical formula of Equation (47). Numerical and analytical results agree well
for all values of αf. Blue dashed line represents the value of the frequency
computed using the inertial torque approximation Equation (48), which
predicts the wrong value of the FCN frequency for large values of the
flattening.
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α=0), predicts:

( )w a= - -
A

A
1 . 48

m
f

We see that, in the example of the figure, the numerical
computation starts to deviate markedly from Equation (48) for
a  0.1f . The precise value of this threshold depends on the
values of the moments of inertia, A and Am. We also see that
Equation (47) agrees well with the numerical computation for
all values of αf, thus proving the validity of the computation of
Section 2.2 based on the vorticity equation.

4. Discussion

We have presented a method to compute the free rotation of
a simplified two-layer planet with an inviscid and incompres-
sible fluid core and a perfectly rigid ellipsoidal mantle. This
method is based on the resolution of the modified Poincaré
Equation (15) coupled to the Liouville Equation (1), which
describes the “wobbling” motion of the mantle subjected to the
pressure torque from the fluid at the CMB. We have found that
the inertial modes of the fluid core enclosed in a steadily
rotating mantle are also modes of the freely rotating two-layer
planet. The only exception being the SO—the simplest of the
inertial modes—which disappears from the spectrum and is
replaced by the FCN (Figure 2). The fact that this is the only
mode that can influence the rotation of the planet (or be
influenced by it) can be traced back to the fact that it is the only
inertial mode that exerts a net pressure torque at the CMB,
something that was already noted by Toomre (1974). This can
be verified by looking at Equations (44), (45), and (46), after
realizing that the reduced pressure components p2,1 and -p2, 1
are zero at the CMB for all modes except the spin-over. This
result demonstrated here for a freely rotating spheroid remains
valid for a triaxial ellipsoid or when there are external tidal
forces acting on the planet. In the latter case, the torque from
the external potential must be added to the total torque
Equation (4), but it must also be included in the definition of
the reduced pressure Equation (7) so that nothing is changed.

Looking at Figure 2, which shows the evolution of the
spectrum of eigenvalues as a function of the core flattening, we
observe that the frequency of the FCN crosses paths with that
of the other inertial modes when αf varies. In their study of the
completeness of the set of inertial modes in a steadily rotating
ellipsoid, Backus & Rieutord (2017) showed that the modes
remain orthogonal even when such accidental degeneracies
happen. In the same paper, the authors also demonstrated that
the Poincaré Equation (15) and the boundary condition
Equation (16) form a self-adjoint system4 when =m 0, thus
providing the mathematical explanation for the realness of the
eigenfrequencies. Our work extends their conclusions to the
case where the motion of the mantle is nonsteady. Triana et al.
(2019) have shown that the pictures drawn out from Figure 2
change significantly when the viscosity of the fluid is taken into
account. The eigenvalues are then complex numbers and their
imaginary parts represent the damping of the corresponding
eigenmodes. Instead of crossing, the eigenvalues avoid each
other in the complex plane in a complicated manner that is not
yet fully elucidated (see their Figures 3 and 4). A similar

example of this phenomenon referred to as avoided crossing
was previously given by Rogister & Valette (2009), who
studied the influence of a thermally stratified liquid core on the
rotational modes of the Earth. In both cases, avoided crossings
result from the introduction of a nonadiabatic diffusion term in
the dynamical equations (respectively viscous or thermal),
which breaks their “self-adjointness.” Birch (2002) gave a
similar interpretation in a study of the magnetohydrodynamical
equations for a one-dimensional stratified medium where the
avoided crossings result from the introduction of radiative
cooling into the model. It should be noted that avoided
crossings can also take place in systems that are self-adjoint.
This is the case, for example, for the eigenfrequencies of the
spheroidal oscillations of stars both in the adiabatic and
nonadiabatic cases. See, e.g., chapter5 of Christensen-
Dalsgaard (2014) or Section 11.3 of Smeyers & Van Hoolst
(2010) for a review. See also Triantafyllou & Triantafyllou
(1991) for a more general description of the phenomenon and
applications to problems in engineering.
We have given the exact analytical expressions of the FCN

and the CW frequencies of a triaxial two-layer planet. To
second order in the flattening, these are given as Equations (28)
and (29), which derive from the joint resolution of the Liouville
equation for the mantle Equation (1) and the equation of
vorticity for the fluid core Equation (20), based on the
assumption that flow vorticity is uniform throughout the core.
The task then reduces to solving Equation (26). We have
shown that the resulting formula for the FCN is valid to all
orders in the flattening parameters, by comparing it to the
numerical solution for a spheroidal core. This is illustrated in
Figure 4, where we have also plotted the same result based on
the formalism of Sasao et al. (1980) as summarized in
Section 2.3. In the same section, we have shown how that
formalism, based on Equation (35), is only valid to first order in
the flattening parameters.
Based on Equation (26), valid for core flows of uniform

vorticity, we have shown how the FCN reduces to the SO in the
limit where the rotation of the mantle is steady. We can
understand this by considering the fact that the pressure torque
Equation (4) vanishes identically when the CMB is spherical.
This limit is equivalent to setting a=c in Equations (44) and
(45) for an axisymmetric core. The motion of the mantle then
becomes independent of that of the fluid core and vice versa,
and the motion of the planet is derived from Equation (26) after
setting =m 0f . The solution is that of a fully rigid solid-body
rotation with frequency:

( )( ) ( )w
a b

b
=

-
-

=
- -C A C B

AB1
. 49

2 2

2

We recognize the expression on the right-hand side as the
frequency of the free Euler wobble (EW). If we imagine
increasing the flattening of the CMB from zero, the core and
mantle become coupled and the EW and SO disappear from the
solutions to be replaced by the CW and the FCN. Both of these
are coupled motions of the core and mantle, even though the
CW is mostly a motion of the mantle and the FCN is (as its
name indicates) mostly a motion of the fluid core.
In Section 2.4, we have shown that, while the SO and FCN

share a similar type of motion in the fluid core (one of uniform
vorticity), it is improper to speak of the SO of a freely rotating
planet. Some publications prefer to use the term tilt-over mode

4 For an introductory discussion on the “self-adjointness” of differential
operators and its implications, see, e.g., Sections 10.1 and 10.2 of Arfken &
Weber (2005).
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(TOM; Toomre 1974; Noir et al. 2003; Cébron et al. 2010), but
this has the disadvantage of being easily confused with yet
another mode of the same name that results from the mismatch
between the polar axis of a planet and its instantaneous rotation
axis (Dehant & Capitaine 1996). This mode has a purely
diurnal frequency in the mantle frame, regardless of the
planet’s internal structure. We give a short mathematical
description of the TOM in Appendix D, in which we derive the
expression for the mantle’s rotation vector with respect to the
steadily rotating frame.

At present, the main interest of the results presented here is
purely conceptual because our model cannot, at the moment,
account for the elasticity of the mantle, which induces
corrections to the FCN and CW frequencies that are first-order
in the core ellipticity and therefore dominate over the second-
order corrections computed here. As it stands now, our model
can nevertheless provide a useful baseline for comparison with
studies performed in triaxial geometries.

Other possible extensions to the present work include taking
into consideration the effects of density stratification inside the
core. Toomre (1974) argued that a radial density profile could
lead to coupling the rotation to inertial modes other than the
SO. For the Earth, the inclusion of a magnetic field can also
potentially alter the spectrum of inertial modes. This is
especially important for the Earth, as the ohmic power
dissipation is estimated to be one of the main sources of
damping of the FCN (Koot et al. 2010). Finally, the presence of
a solid inner core should be taken into account in order to
model the free inner core nutation of the Earth. This proves to
be a significant numerical challenge, as it no longer permits the
usage of a single set of oblate spheroidal coordinates covering
the whole volume of the core. Concerning the planet Mars, it is
considered (but not yet demonstrated) that there is no inner core
and that the main dissipation mechanism at the CMB will be
induced by the viscosity, also thought to be a very important
factor for the Earth (S. A. Triana et al. 2020, in preparation).
Furthermore, even in the simplified spherical shell geometry,
the elliptical nature of the Poincaré equation is known to cause
singularities in the fluid velocity (and pressure) field (Rieutord
et al. 2000). These singularities can be regularized by
reintroducing viscosity into the picture, with the well-known
numerical limitations that it entails.

The authors would like to thank T. Van Hoolst for useful
discussions in the writing of this work. We also extend our
gratitude to the two reviewers, M. Efroimsky and M.
Dumberry, whose comments helped to improve its presentation
significantly. The research leading to the results presented here
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (advanced grant agreement No. 670874).

Appendix A
Derivation of the Poincaré Equation and Solutions for the

Fluid Spheroid

From the momentum Equation (13):

ˆ ( ) ( )  s s+ ´ + + ´ =u z u m rp 02 , A1
w

where we have set s wº i for simplicity. Taking the cross
product of Equation (A1) with ẑ and injecting the result back

into Equation (A1), we find:

(ˆ (ˆ ) ˆ ( )
s s s

- ´ ´ -
´

+ =u z z u
z w w

0
4

2 , A2
2 2

(ˆ (ˆ · ) ) ˆ ( )
s s s

« - - -
´

+ =u z z u u
z w w

0
4

2 . A3
2 2

From Equation (A1), we also have:

ˆ · (ˆ · ) ( )
s

= -z u
z w

, A4

which can then be used to rewrite the second term of
Equation (A3). This allows us to isolate u:

⎜ ⎟⎛
⎝

⎞
⎠(ˆ ) ˆ (ˆ · ) ( )s

s s s
=

+
- + ´ -u w z w z z w

4

2 4
. A5

2 2

Equations (15) and (16) follow immediately from the condition
of incompressibility and the no-penetration condition
respectively.
In Section 3, we compare the inertial modes of the freely

rotating two-layer planet with an axisymmetric fluid core to
those of a fluid core in steady rotation around the polar axis, ẑ.
Those are the results of Equations (15) and (16) with =m 0. In
such a case, Bryan (1889) showed that the inertial modes can
be written as a sum of product of two associated Legendre
polynomial; see Equation (A.13) of Rekier et al. (2018). The
frequencies of the inertial modes, ω, then derive from the
solutions of:

( )
( )

( ) ( )
w

¢ -
-

=P x
mx

x
P x

2

1
0, A6ℓ

m
ℓ
m

2

where ( ) ( ) ( )( )
!

= - -- +

+P x x x1 1 ,ℓ
m

ℓ

d

dx
ℓ1

2
2 2

m

ℓ

m ℓ m

ℓ m
2 denotes the

associated Legendre polynomial of degree ℓ and order m, and
where we wrote

( )w
w

=
-
-

x
e

e

1

4
, A7

2

2 2

with º -e 1 c

a

2

2 denoting the (geometrical) eccentricity of
the fluid core.

Appendix B
The Poincaré Flow and its Associated Angular Momentum

Equation (19) gives the general expression of a flow with a
uniform vorticity. The scalar function, ψ, must be chosen so as
to accommodate the no-penetration boundary condition at the
CMB; see Equation (8). Following Poincaré (1885), we do so
by operating the following coordinates transform:

{ } { } ( )x y z ax by cz, , , , , B1

where a, b, and c denote the dimensions of the core (Figure 1).
If one defines the rescaled position vector in terms of its

Cartesian coordinates as ( )¢ =r , ,x

a

y

b

z

c

T
, the implicit equation

of the ellipsoid surface reduces to ∣ ∣¢ =r 12 . The most general
flow of uniform vorticity satisfying Equation (8) is then:

( )= ¢ ´ ¢u w r , B2

where ¢w is a constant vector in space related to the flow
vorticity, w, through the condition that ( ) ´ =u w2 . In
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components, this yields

⎛
⎝⎜

⎞
⎠⎟ ( )= ¢ - ¢ =

+
-

+
u w

a

c
z w

a

b
y a

w z

a c

w y

a b
2 , B3x y z

y z
2

2 2 2 2

⎛
⎝⎜

⎞
⎠⎟ ( )= ¢ - ¢ =

+
-

+
u w

b

a
x w

b

c
z b

w x

a b

w z

b c
2 , B4y z x

z x
2

2 2 2 2

⎛
⎝⎜

⎞
⎠⎟ ( )= ¢ - ¢ =

+
-

+
u w

c

b
y w

c

a
x c

w y

b c

w x

a c
2 , B5z x y

x y
2

2 2 2 2

from which we obtain the expression of ψ by comparison with
Equation (19):

( )

y w w w=
-
+

+
-
+

+
-
+

c b

c b
yz

a c

a c
zx

b a

b a
xy.

B6

x y z
2 2

2 2

2 2

2 2

2 2

2 2

Using Equations (B3) to (B6), we can finally compute the
angular momentum of the core from its definition as measured
from the inertial frame:

· ( ) ( )ò rW= + ´L I r u B7core c m
core

· ( ) ( ) ( )ò r yW = + + ´I w r , B8c m
core

where Ic denotes the tensor of inertia of the fluid core and the
integrals run over the whole volume of the core. In Cartesian
components, this yields:

( )( )
( )= W +

+ - + -
L A

A B C C A B

A
w , B9x

f
x f f f f f f

f

x
core m

( )( )
( )= W +

+ - + -
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B C A A B C

B
w , B10y

f
y f f f f f f

f

y
core m

( )( )
( )= W +

+ - + -
L C

C A B B C A

C
w . B11z

f
z f f f f f f

f

z
core m

Using the definitions of the dynamical flattening parameters
Equations (23), these read:

( )( )
( )

( ) ( ) ( )

a a b
b
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-

» W + + 

L A A w

A w
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+
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+
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z
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z

f
z z
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m
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where, in the rightmost equalities, we have assumed that αf and
βf are small quantities proportional to a single parameter ò.

Appendix C
Tensor of Inertia

The principal moments of inertia of the fluid ellipsoid of
equation + + = 1x

a

y

b

z

c

2

2

2

2

2

2 and with a homogeneous density rf

are:

( ) ( )p
r=

+
A abc

b c4

3 5
, C1f f

2 2

( ) ( )p
r=

+
B abc

a c4

3 5
, C2f f

2 2

( ) ( )p
r=

+
C abc

a b4

3 5
. C3f f

2 2

After introduction into the definitions of the dynamical
flattening parameters Equations (23), we find:

( )a =
+ -
+ +

a b c

a b c

2

2
, C4f

2 2 2

2 2 2

( )b =
-

+ +
a b

a b c2
. C5f

2 2

2 2 2

Substituting Equations (C4) and (C5) into Equations (C1) to
(C3) yields:

( )( )
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( ) ( )p
r

a a b

a b
b=

- - +

+ +
-A a
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1 2 1
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15
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2

We can obtain the expressions of the moments of inertia of the
mantle by working directly from the above expressions. If we
define the ratio between the semimajor axes of the core and of
the whole planet as η, the principal moments of inertia of the
mantle read:
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Appendix D
The Steadily Rotating Frame and the Tilt-over Mode

In Figure 3, we have represented the ratio between the
kinetic energy density of the mantle and that of the fluid core as
measured in the steadily rotating frame, which corresponds to
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the frame rotating with a constant velocity around the mean
axis of rotation of the planet. In their Appendix C, Triana et al.
(2019) gave some details on how the values of the quantities
computed in that frame relate to their value in the mantle frame.
We now provide a more detailed explanation.

We can think of the z-axis in the inertial frame, which we
denote by ẑIF, as the mean rotation axis of the planet
perpendicular to the equator (at J2000). The angular velocity
of the mantle relative to the steadily rotating frame therefore
reads (assuming Ω0=1):

(ˆ ) ˆ ( )∣W = + -z m z , D1m SRF IF

where ẑ denotes the instantaneous z-axis of the mantle frame.
In order to write this in coordinates, we need to express ẑIF in
the mantle’s coordinates. We can do this by using the three
Euler angles that relate the mantle to the steadily rotating
frame. We use the following convention:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

·
·
·

( ) · ( ) · ( ) · ( )
·
·
·  

g b a= ´

D2

R R R R t ,z y x z

T
mantle coordinates inertial frame coordinates

where the Ri denotes the ordinary (three-dimensional) rotation
matrices around the axis i. The arguments of these matrices
define the Euler angles α, β, and γ, which are all harmonic
functions of t with frequency ω, and should not be confused
with the flattening parameters of Equations (24). From the
transformation matrix, T, we can construct the antisymmetric
rotation tensor:

· ( )ºR
dT

dt
T . D3T

The dual vector of R then defines the angular velocity of the
rotation (see, e.g., p. 46 of Lai et al. 2010), which must be equal
to the angular velocity of the mantle. In components, and
assuming that α, β, and γ are small, this gives:

⎧
⎨⎪
⎩⎪

( )
wa b
wb a
wg

= -
= -
=

m i
m i
m i .

D4

x

y

z

In order to obtain the components of ẑIF in the mantle frame,
we use the transformation matrix:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟· ( )

b
a=
-

T
0
0
1 1

. D5

Finally, after solving Equation (D4) for α and β, we obtain the
expression of the angular velocity of the mantle relative to the
steadily rotating frame in the mantle’s coordinates (in terms of
+m and m−):

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )∣

( ) ( )

( ) ( )
W =

+

- +

w
w

w
w

w
w

w
w

- +

- +

+ -

+ -

m

c c. . D6

m m

im im

z

m SRF

2 1 2 1

2 1 2 1

Equation (D6) presents a clear resonance when w = 1. These
values can be interpreted as new eigenfrequencies, which are

added to the spectrum when we solve the first two equations of
Equation (D4) for α and β simultaneously with Equations (26).
They correspond to the motion known as the tilt-over mode,
which has a purely diurnal frequency independent of the
interior structure of the planet.
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