Ref: SCART-2020-0123

The atmosphere of Mars as observed by InSight

Banfield, Don ; Spiga, Aymeric ; Newman, Claire ; Forget, François ; Lemmon, Mark ; Lorenz, Ralph ; Murdoch, Naomi ; Viudez-Moreiras, Daniel ; Pla-Garcia, Jorge ; Garcia, Raphaël F. ; Lognonné, Philippe ; Karatekin, Ozgur ; Perrin, Clément ; Martire, Léo ; Teanby, Nicholas ; Hove, Bart Van ; Maki, Justin N. ; Kenda, Balthasar ; Mueller, Nils T. ; Rodriguez, Sébastien ; Kawamura, Taichi ; McClean, John B. ; Stott, Alexander E. ; Charalambous, Constantinos ; Millour, Ehouarn ; Johnson, Catherine L. ; Mittelholz, Anna ; Määttänen, Anni ; Lewis, Stephen R. ; Clinton, John ; Stähler, Simon C. ; Ceylan, Savas ; Giardini, Domenico ; Warren, Tristram ; Pike, William T. ; Daubar, Ingrid ; Golombek, Matthew ; Rolland, Lucie ; Widmer-Schnidrig, Rudolf ; Mimoun, David ; Beucler, Éric ; Jacob, Alice ; Lucas, Antoine ; Baker, Mariah ; Ansan, Véronique ; Hurst, Kenneth ; Mora-Sotomayor, Luis ; Navarro, Sara ; Torres, Josefina ; Lepinette, Alain ; Molina, Antonio ; Marin-Jimenez, Mercedes ; Gomez-Elvira, Javier ; Peinado, Veronica ; Rodriguez-Manfredi, Jose-Antonio ; Carcich, Brian T. ; Sackett, Stephen ; Russell, Christopher T. ; Spohn, Tilman ; Smrekar, Suzanne E. ; Banerdt, W. Bruce

published in Nature Geoscience, 13, pp. 190-198 (2020)

Abstract: The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars's atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars's meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars's atmosphere by InSight will be key for prediction capabilities and future exploration.

DOI: 10.1038/s41561-020-0534-0
Links: link

The record appears in these collections:
Royal Observatory of Belgium > Reference Systems & Planetology
Science Articles > Peer Reviewed Articles

 Record created 2020-06-16, last modified 2020-06-16

Download fulltext