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InSight: geophysical and geodetical constraints on Mars’ core



Core composition from combined min-φ and geo-χ 
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Depletion of siderophile elements: Imprint of core formation

! Ni and Co as tracer of P and T (i.e. magma ocean depth) 
! Cr as tracer of silicate composition (i.e. magma ocean composition)  

! Nb/Ta as tracer of silicate & metal composition (i.e. core 
composition)

Bulk	silicate	Earth	composition



Metal-silicate partitioning experiments

Experiments in piston-cylinder press, multi-anvil apparatus and laser-heated DAC  
+ chemical analysis of recovered samples 
 ! Partitioning coefficients over large P-T range 
 ! Exchange coefficiens as a function of P, T and Χ
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Continuous core differentiation models

- Final equilibration depth 0 to 25 GPa (0 to 2080 km depth) 
- Temperature between mantle solidus and liquidus 
- Varying magma ocean composition, final FeO concentration given by 

mantle composition      



Core differentiation models without sulfur – constant mantle FeO 

Ni, Co ! final equilibration depth > 14 GPa 
Cr, Nb/Ta ! constant FeO concentration, high T 
! No significant Si in the core, some O (0.5-1 wt.%), agreement with Brennan 2019 
 but not as much as predicted by single-stage models (Steenstra 2018, Tsuno 2011)



Interaction between elements



Core differentiation models with 7 wt.% sulfur 

S in the core increase O significantly: 7 wt.% S ! 2-3 wt.% O



Core differentiation models with 12 wt.% sulfur 

S in the core increase O significantly: 12 wt.% S ! 4-6 wt.% 
O



Structural and thermo-elastic properties of liquid Fe-S alloys

XRD experiments on liquid Fe-S alloys at high pressure and high temperature 
6 GPa < P < 14 GPa; 1200 K < T < 2500 K; 0 wt.% < S < 25 wt.%

Density	vs.	P	! compressibility	

Density	vs.	T	! thermal	
expansion	

7	GPa	and	1800	K

Xu et al., in prep.

MR51D-0088



Liquid Fe-S data set

density:	Morard	2013;	Morard	2018;	Xu	in	prep.	
velocities:	Nishida	2017;	Kawaguchi	2017



Thermodynamical model and data fit

- both	density	and	velocity	data	accurately	described	by	non-ideal	solution	model	with	
pressure-dependent	excess	volume	

- Liquid	FeS	end-member	EoS	and	excess	volume	from	the	data	
- Liquid	Fe	end-member	EoS	from	Komabayahsi	2018



Core compositions matching geodesy constraints 



Different compositional models

14.7	wt.%	FeO	in	BSM	(Yoshizaki	2019)	
18.1	wt.%	FeO	in	BSM	(Taylor	2013)	



Conclusions

• Model core composition of Mars while matching the geochemistry of the 
Martian mantle (Ni, Co, Cr, Nb/Ta, W) 

• Accreting with low FeO content not consistent with Cr abundances 

• Mars’ core cannot contain Si (< 0.2%) 

• Core is too dense if S not present (Si and O not sufficient) 

• S in the core increases O significantly: 
• 7 wt% increases O from 1 to 3 wt% 
• 12 wt% increases O to 6-7 wt% 

• HP-HT experiments on liquid Fe-S, Fe-O and Fe-S-O alloys to build a 
reference data set (thermo-elasticity and melting) 

• Thermodynamic models accounting for data

! Ready once constraints on Mars’ core radius will come from InSight



Acknoledgments

⬥ Nicolas Guignot (Synchtrotron SOLEIL) 

⬥ Steeve Greaux (GRC, Ehime University)  


