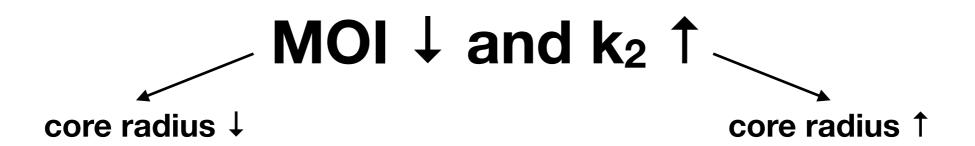


The interior structure of Mercury constrained by geodesy data and new experimental data about iron-rich alloys

Attilio Rivoldini, Tim Van Hoolst, and Marie-Hélène Deproost Observatoire Royal de Belgique


GGWG ESTEC 2019

Geodesy data

- Margot et al. 2012
 Obliquity: 2.04 ± 0.08 arcmin ⇒ MOI=0.345 ± 0.014 (4%)
 Libration amplitude: 38.5 ±1.6 arcsec (4%)
- Stark et al. 2015
 Obliquity: 2.03 ± 0.09 arcmin ⇒ MOI=0.345 ± 0.014 (4%)
 Libration amplitude: 38.9 ±1.3 arcsec (3%)
- Verma et al. 2016 Tidal Love number: k₂=0.46 ± 0.02 (4%)
- Genova et al. 2019 Obliquity: $1.97 \pm 0.009 \text{ arcmin} \Rightarrow \text{MOI}=0.333 \pm 0.0015 (0.5\%)$ Libration amplitude: $40.0 \pm 8.7 \text{ arcsec} (20\%)$ Tidal Love number: $k_2=0.57 \pm 0.03 (5.2\%)$
- Konopliv et al. 2020 Obliquity: 1.99 \pm 0.12 arcmin \Rightarrow MOI=0.337 \pm 0.02 (~6%) Tidal Love number: k₂=0.53 \pm 0.03 (5.6%)

S moving surface feature Pole right ascension and declination from

Pole right ascension and declination from MESSENGER orbit

New thermodynamic model for liquid-Fe alloys

JGR Planets

RESEARCH ARTICLE

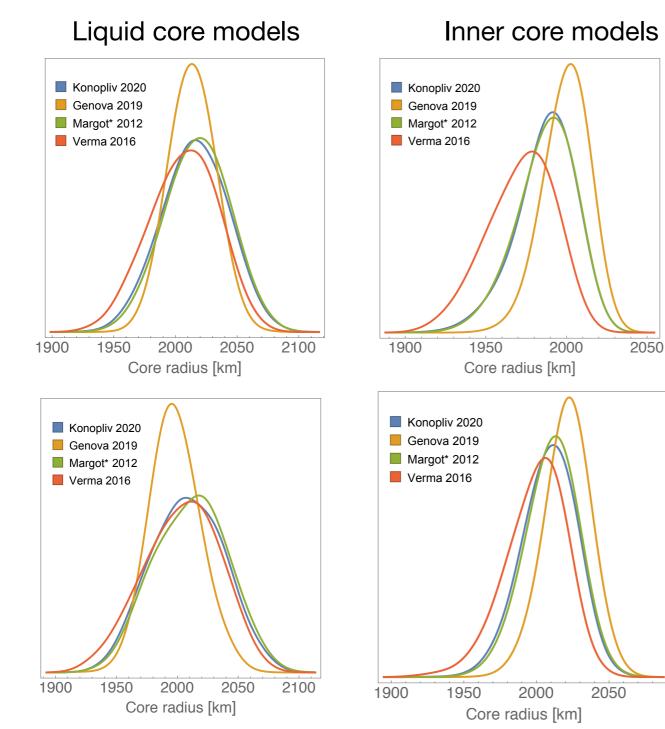
10.1029/2019JE005936

Key Points:

- The sound velocity and density of liquid Fe-Ni-S (17 and 30 at% S) and Fe-Ni-Si (29 and 38 at% Si) were measured up to 14 GPa
- Based on the obtained elastic properties, estimated S contents in

Pressure and Composition Effects on Sound Velocity and Density of Core-Forming Liquids: Implication to Core Compositions of Terrestrial Planets

Hidenori Terasaki¹ , Attilio Rivoldini², Yuta Shimoyama¹, Keisuke Nishida³, Satoru Urakawa⁴, Mayumi Maki¹, Fuyuka Kurokawa¹, Yusaku Takubo¹, Yuki Shibazaki^{5,6}, Tatsuya Sakamaki⁷, Akihiko Machida⁸, Yuji Higo⁹, Kentaro Uesugi⁹, Akihisa Takeuchi⁹, Tetsu Watanuki⁸. and Tadashi Kondo¹


- based on measured densities (up to 5 GPa) and acoustic sound velocities (up to 14 GPa) of liquid (Fe₇₃Ni₁₀S₁₇, Fe₆₀Ni₁₀S₃₀), liquid (Fe₆₁Ni₁₀Si₂₉, Fe₅₂Ni₁₀Si₃₈), and liquid Fe eos
- predicted low and high pressure elastic properties are in good agreement with previously measured low pressure and high pressure data (up to 60GPa)

⇒ thermodynamic model valid for the whole (x,p,T) range of Mercury's liquid core

Prior assumptions, modeling, and data

- crust: density [2700, 3100]kg/m³ and thickness [15,120]km
- mantle elastic properties compatible with forsterite-enstatite mixture
- inner core radius and light element fraction in agreement with liquidus; assume Si concentration in liquid below eutectic composition (because of unknown liquidus at those compositions); core radius prior [1800, 2200]km
- prior core-mantle boundary temperature between eutectic temperature and (optimistic) mantle solidus
- libration amplitude calculated by taking into account gravitational core-mantle coupling and mantle induced core density stratification (Dumberry et al., 2013)
- geodesy data: 88 day libration amplitude Margot et al. 2012+obliquity+ k₂
 1) Konopliv 2020, 2) Genova 2019, 3) Margot 2012 (with k₂ from Konopliv 2020),
 4) Verma 2016 (with obliquity from Margot 2012)

Results: Core radius

Fe-S

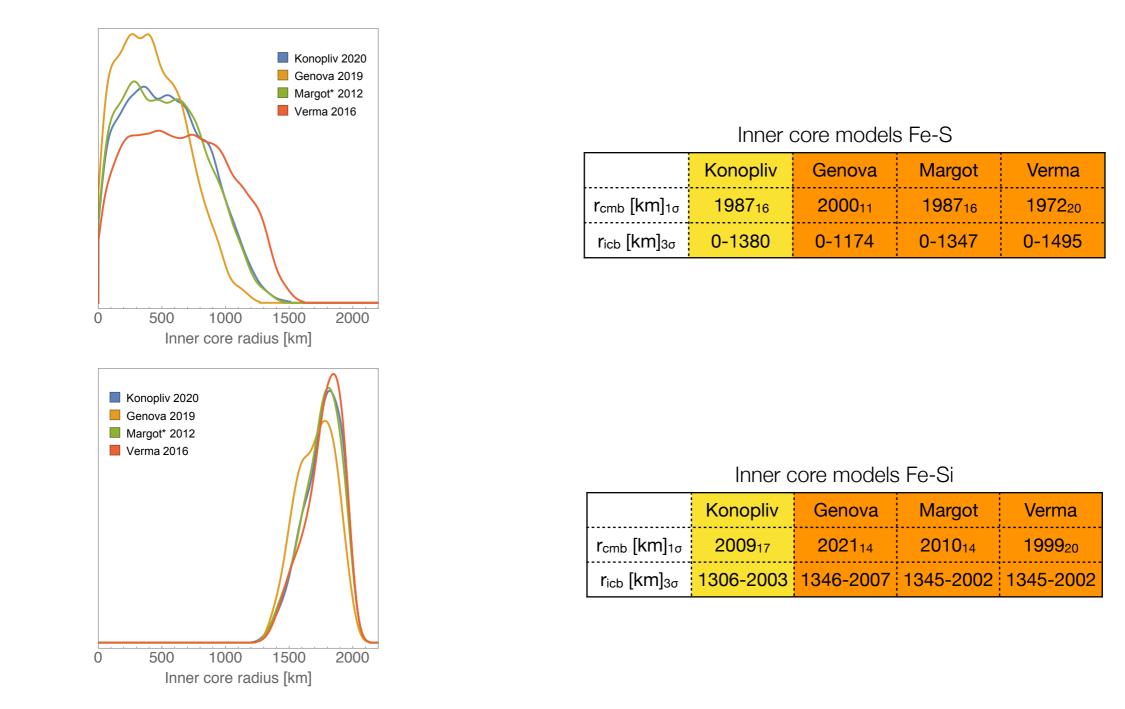
Fe-Si

	Konopliv	Genova	Margot	Verma
r _{cmb} [km] _{1σ}	2016 ₂₆	2013 ₁₇	2017 ₂₅	2008 ₂₇
x _S [wt%] _{1σ}	3.8-7.4	3.9-5.9	3.9-7.5	3.5-7.4

Inner core models Fe-S

	Konopliv	Genova	Margot	Verma
r _{cmb} [km] _{1σ}	1987 16	200011	1987 16	1972 ₂₀
xs [wt%]1σ	3.5-5.8	4.4-6.0	3.5-5.8	2.4-5.6

Liquid core models Fe-Si

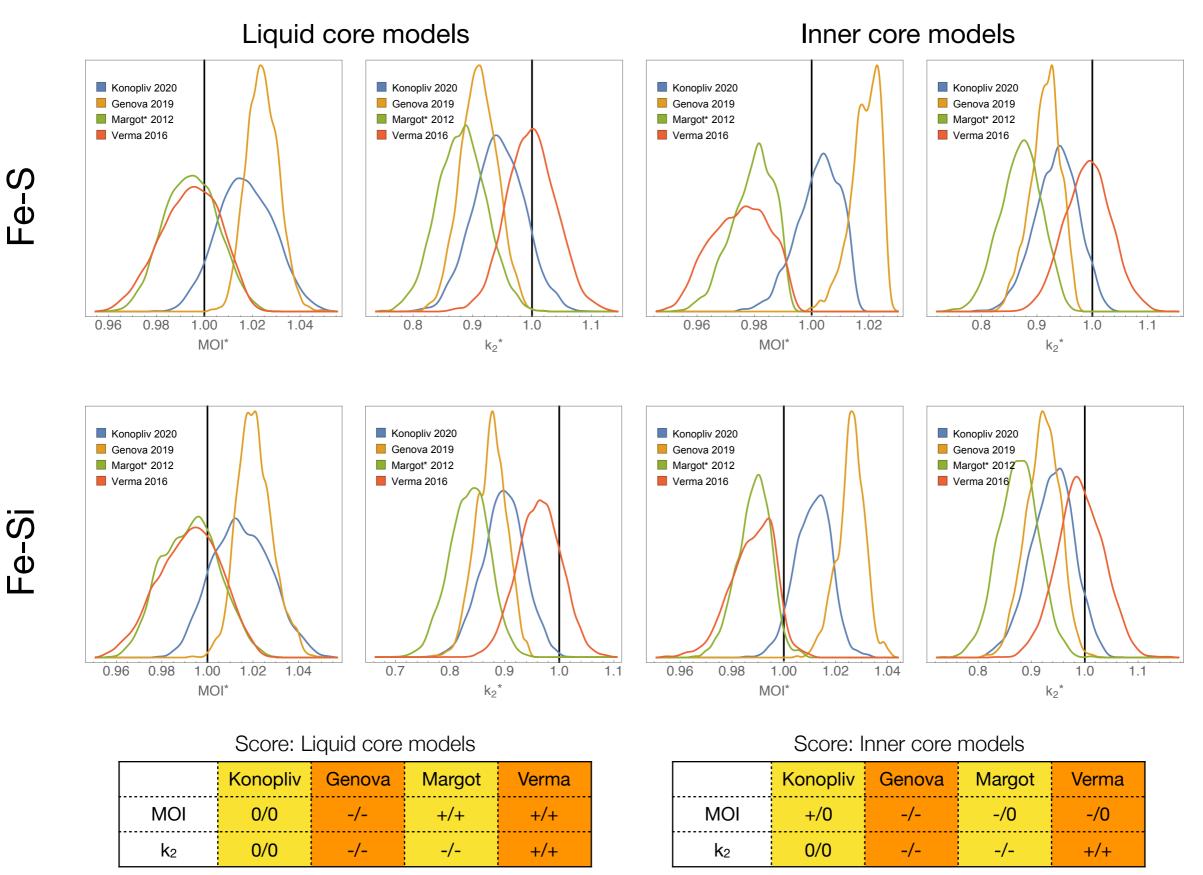

	Konopliv	Genova	Margot	Verma
r _{cmb} [km] _{1σ}	2008 ₂₉	1998 19	2011 ₂₉	2003 ₃₁
x _{Si} [wt%]1σ	6.4-12.7	6.4-10.0	6.6-12.8	6.0-12.8

Inner core models Fe-Si

	Konopliv	Genova	Margot	Verma
r _{cmb} [km] _{1σ}	2009 17	2021 ₁₄	2010 ₁₄	1999 ₂₀
x _{Si} [wt%]1σ	11.2-15.0	12.2-15.2	11.4-15.0	10.6-15.1

- Fe-Si models require more light elements since Fe-Si alloys are denser than Fe-S alloys
- core radius at 1σ : 1952-2043 km
- core radius mostly driven by k2 value

Results: Inner core radius



Fe-S

Fe-Si

- inner core radius at 3σ: Fe-S : 0-1495 km and Fe-Si: 1306-2007 km
- expect to loose inner core radius constraint with Fe-S-Si models!

Results: Model fit

likelihood: + high, 0 moderate, - marginal

Conclusions

- models with and without inner core agree with geodesy data but liquid Fe-Si models require somewhat unlikely high present-day core temperatures
- core radius ~[1952,2043]_{1σ} km
- inner core radius: Fe-S: ~[0,1500]_{3σ} km and Fe-Si:~[1300,2010]_{3σ} km ⇒expect to loose inner core constraint for Fe-S-Si models
- high likelihood for models with MOI-k₂ from Margot 2012-Verma 2016 and significantly lower likelihood with MOI-k₂ from Genova 2019
- not used constraints:
 - without a growing inner core past and present dynamo cannot be explained
 - 7km radial contraction of Mercury requires a relative small inner core and limited amount of core cooling

- magnetospheric induced currents require a core radius of 2066±22km (Wardinski 2019)