The interior structure of Mercury constrained by geodesy data

Attilio Rivoldini

New Geodesy data

- Margot et al. 2012
 Obliquity: 2.04 ± 0.08 arcmin ⇒ MOI=0.345 ± 0.014 (4%)
 Libration amplitude: 38.5 ±1.6 arcsec (4%)
- Stark et al. 2015
 Obliquity: 2.03 ± 0.09 arcmin ⇒ MOI=0.345 ± 0.014
 Libration amplitude: 38.9 ±1.3 arcsec
- Verma et al. 2016 Tidal Love number: k₂=0.46 ± 0.02
- Genova et al. 2019 Obliquity: $1.97 \pm 0.009 \text{ arcmin} \Rightarrow \text{MOI}=0.333 \pm 0.0015 (0.5\%)$ Libration amplitude: $40.0 \pm 8.7 \text{ arcsec}$ Tidal Love number: $k_2=0.57 \pm 0.03 (5.2\%)$
- Konopliv et al. 2020 Obliquity: 1.99 \pm 0.12 arcmin \Rightarrow MOI=0.337 \pm 0.02 (~6%) Tidal Love number: k₂=0.53 \pm 0.03 (5.6%)

New thermoelastic data about I-Fe alloys

- Terasaki et. al 2019: densities (up to 5 GPa) and acoustic sound velocities (up to 14 GPa) of (Fe₇₃Ni₁₀S₁₇, Fe₆₀Ni₁₀S₃₀) and (Fe₆₁Ni₁₀Si₂₉, Fe₅₂Ni₁₀Si₃₈)
- non-ideal solution model required to summarize Fe-S and Fe-Si elastic data
- · liquid solution model in agreement with low pressure and high pressure data

Prior assumptions, modeling, and data

- crust: density [2700, 3100]kg/m³ and thickness [15,120]km
- mantle elastic properties compatible with forsterite-enstatite mixture; corresponds to a prior mantle density [3150, 3400]kg/m³
- inner core radius and light element fraction in agreement with liquidus; assume Si concentration in liquid below eutectic composition (because of unknown liquidus at those compositions); core radius prior [1800, 2200]km
- prior core-mantle boundary temperature between eutectic temperature and (very likely too warm!) mantle solidus
- libration amplitude calculated by taking into account gravitational core-mantle coupling and mantle induced core density stratification (Dumberry et al., 2013)
- geodesy data: MOI and k₂ from Konopliv 2020 and libration amplitude Margot et al. 2012

Fe-Si melting

- based on 1 bar Fe-rich liquidus, and melting data of: Fe9wt%Si, Fe15wt%Si, Fe15wt%Si, Fe18wt%Si
- assume equipartitioning of Si in solid and liquid Fe
- Margules model with pressure dependent interaction coefficients

Fe-Si melting compared to Fe-S

⇒ 5wt%Si decrease Fe liquidus by about as much as 1wt%S

Results: Fe-S models compared to Rivoldini et al. 2013

	2013	2020
MOI	0.346±0.014	0.337±0.02
g 88	38.5"±1.6"	38.5"±1.6"
Cm	0.148±0.006	0.148±0.006
k ₂	-	0.53±0.03

		2013	2020
	r _{cmb} [km]	1965-2043	1974-2003
	r _{icb} [km]	345-1430	246-899
	x _S [wt%]	2.8-6.2	2.7-5.3
	ρ _{Mantle} [kg/m ³]	3163-3449	3110-3180

Results

- core radius between ~1926 and 2030km
- Fe-Si models require more light elements since Fe-Si alloys are denser than Fe-S alloys

Results

- models with and without inner core have a comparable core radius range with the exception of the liquid Fe-Si models
- liquid Fe-Si models only possible for high T_{cmb} ≥2037K (3σ) (implying molten lower mantle?) and inner core models with Fe-Si only possible if T_{cmb} ≥1718K (3σ)
- Fe-S models r_{icb} ~[0,1214]km and Fe-Si r_{icb} ~[1507,2000] km (3 σ)
- mantle density ~[3100,3310]kg/m³ (3o)
- · almost no constraints on crust thickness and density

Conclusions

- models with and without an inner core agree with the new geodesy data (liquid Fe-Si models only possible if T_{cmb}≿2037K)
- new smaller MOI value favors models with smaller core radii Fe-S [1975,2003]km (old [1965,2043]km) and FeSi [1950-2012]km as well as a smaller mantle density (<3310 kg/m³)
- Fe-S models have an inner core radius below about 1300km and for Fe-Si models the inner core radius is ~[1500,2000]km
- new MOI value favors models with smaller cores but those models are somewhat at odds with the large k₂ value suggesting that the mantle in the models is too stiff