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ABSTRACT
We present the results of the light curve model fitting technique applied to optical and near-
infrared photometric data for a sample of 18 Classical Cepheids (11 fundamentals and 7 first
overtones) in the Large Magellanic Cloud (LMC). We use optical photometry from the OGLE
III data base and near-infrared photometry obtained by the European Southern Observatory
public survey ‘VISTA near-infrared survey of the Magellanic Clouds system’. Iso-periodic
non-linear convective model sequences have been computed for each selected Cepheid in order
to reproduce the multifilter light-curve amplitudes and shape details. The inferred individual
distances provide an intrinsic weighted mean value for the LMC distance modulus of μ0 =
18.56 mag with a standard deviation of 0.13 mag. We derive also the Period–Radius, the Period–
Luminosity, and the Period–Wesenheit relations that are consistent with similar relations in
the literature. The intrinsic masses and luminosities of the best-fitting models show that all the
investigated pulsators are brighter than the predictions of the canonical evolutionary mass–
luminosity relation, suggesting a significant efficiency of non-canonical phenomena, such as
overshooting, mass-loss, and/or rotation.

Key words: stars: oscillations – stars: variables: Cepheids – Magellanic Clouds – galaxies:
structure.

1 IN T RO D U C T I O N

Classical Cepheids (CCs) are a class of pulsating stars widely used
to calibrate the extragalactic distance scale, through secondary
distance indicators. Their role as tool to measure distance is
based on the relation they show between the period of pulsation
and their intrinsic luminosity, known as period–luminosity (PL)
relation. From an evolutionary point of view, a CC is a star with
an intermediate mass (from 3 to 13 M�), in the central helium
burning phase (covering an age range from ∼10 to ∼200 Myr, see
Anderson et al. 2017), that passes through the instability strip as

� E-mail: roberto.molinaro@inaf.it

it evolves bluewards and then redwards (blue loop excursion), at
roughly constant luminosity for each given mass. From a theoretical
point of view, CCs, like all the other classes of pulsating stars, obey
to a relation between the oscillation period and their mean density,
as demonstrated by Eddington (1926). By combining this relation
with the Stefan–Boltzmann law, one obtains a period–luminosity–
mass–temperature relation. For CCs, this relation can be reduced
to a period–luminosity–colour (PLC) relation because the theory
of stellar evolution predicts the existence of a mass–luminosity
relation (MLR), whose coefficients depend on the assumed metal
and helium abundances. Currently adopted PL relation can be seen
as a projection of the PLC relation on the PL plane (and references
therein Freedman, Wilson & Madore 1991; Bono et al. 1999; Caputo
et al. 2005). In other words, the PL relation shows an intrinsic dis-
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persion related to the finite width of the instability strip. Obviously,
for each filter combination, both the PLC and its projection on the
PL plane critically depend on the MLR. Since the efficiency of
non-canonical phenomena (such as core overshooting, mass-loss,
rotation) significantly affects the MLR, in order to determine precise
distances using CCs, a detailed theoretical evaluation of the impact
of these processes needs to be assessed.

Several authors have discussed the effect of mass-loss and core
overshooting (see Chiosi, Wood & Capitanio 1993; Bono et al.
1999; Caputo et al. 2005; Keller & Wood 2006; Neilson et al.
2012; Marconi et al. 2013, and references therein), as well as of
rotation (Anderson et al. 2016) on CC properties. These studies
are often related to the so-called mass discrepancy problem, first
outlined by Stobie (1969) and Christy (1970) and subsequently
confirmed by additional investigations. According to these studies,
the CC evolutionary mass (inferred from the comparison between
theoretical isochrones and observations in the colour–magnitude di-
agram) was found to be systematically higher than the ‘pulsational’
one based on the period–mass–radius relation1 (Fricke et al. 1972;
Bono et al. 2001) or other methods based on the theory of pulsation
(Bono, Castellani & Marconi 2002; Caputo et al. 2005). Keller &
Wood (2006) and Marconi et al. (2013) adopted the model fitting
of multifilter light, radial velocity, and radius curves to address the
mass discrepancy. This is done through direct comparison of the
observed and predicted variations along a pulsation cycle, the latter
based on non-linear convective pulsational models (see Bono et al.
2000, 2002; Marconi et al. 2013, for a detailed discussion of the
method).

The ‘VISTA near-infrared Y, J, Ks survey of the Magellanic
Clouds system’ (VMC; Cioni et al. 2011) covers the Magellanic
system with deep near-infrared (NIR) (Y, J, Ks filters) Tisserand
(VIRCAM; Dalton et al. 2006) photometry using the ESO/VISTA
telescope (Emerson, McPherson & Sutherland 2006). The main
science goals of the VMC are the study of the spatially resolved star
formation history (SFH) and the determination of the 3D structure
of the whole Magellanic system. Particularly useful for the latter
aim are pulsating variables such as RR Lyrae stars and CCs that
have been the subject of several studies in the context of the VMC
survey, as distance indicators and stellar population tracers (see e.g.
Ripepi et al. 2012a,b, 2014, 2015, 2016, 2017; Moretti et al. 2014,
2016; Muraveva et al 2015, 2018).

Marconi et al. (2017) presented the model fitting of multiwave-
length light curves and, when available, radial velocity curves of 12
Small Magellanic Cloud (SMC) CCs whose NIR observations were
secured as part of the VMC data. The inferred stellar parameters
and individual distances permitted to constrain not only the mean
distance modulus of the SMC but also the behaviour of the
investigated stars in the MLR, PL, period–radius (PR), and period–
Wesenheit (PW) relations.2

1From the combination of the period–density relation and the Stefan–
Boltzman law, it is also possible to obtain a period–mass–radius relation,
which is useful to estimate the masses of Cepheids if their radii are known,
and vice versa. According to the linear adiabatic theory, the pulsation
period of variables is related to mass and radius through the equation P =
α(M/M�)β (M/M�)γ (Fricke, Stobie & Strittmatter 1972), which can be
linearized easily in logarithmic space (log P = log α + βlog (M/M�) +
γ log (R/R�)) thus obtaining the Period-Mass-Radius (PMR) relation.
2The Wesenheit magnitudes include a colour term with a coefficient that
corresponds to the ratio between total to selective extinction in the selected
filter pair (Madore 1982; Caputo, Marconi & Musella 2000), thus making
the Wesenheit relations reddening free.

In this paper, we extend this to a sample of 11 fundamental (F) and
7 first overtone (FO) CCs in the Large Magellanic Cloud (LMC),
that are within the field of view of the VMC survey.

As regards the organization of the paper, in Section 2 we discuss
the sample selection, in Section 3 we describe the adopted model
fitting technique. The application of this technique to the selected
LMC CCs and the implications of our results for the MLR, the
PR, the PL, and PW relations are described in Sections 4 and 5,
respectively. The final section includes a summary and perspectives.

2 SELECTI ON O F THE SAMPLE

The selected sample of CCs is composed of 11 and 7 F and FO
pulsators, respectively, that cover a range in oscillation period from
∼1 to ∼30 d. The selected CCs have optical photometry from the
OGLE III data base3 (Soszyński et al. 2010) and NIR photometry
from the VMC data base (see e.g. Cioni et al. 2011; Ripepi et al.
2016, 2017, for a description of VMC light curves). In particular,
we used aperture photometry data from the Cambridge Astronomy
Survey Unit (CASU) and the Vista Science Archive (see Cross et al.
2012; González-Fernández et al. 2018, for details). The sample is
selected in order to span a wide range in period, luminosity, and
shape of the light curves from the OGLE III data base. The period
values spanned by our sample do not include the range of the so-
called ‘bump’ Cepheids (8–12 d). However, this period range has
already been analysed, using the same pulsating code as in this
work, in Bono et al. (2002), where the authors selected a couple
of LMC Cepheids, one with the bump on the rising branch and the
other on the decreasing branch.

Although the number of the selected CCs does not represent
the entire LMC, they let us test the prediction capabilities of the
model fitting technique in a stellar system. We note that obtaining
a statistically significant extension of the selected target number
would be extremely time consuming to reach convergence of our
hydrodynamical pulsation code.

The distribution in right ascension and declination of the selected
CCs is shown in Fig. 1, where all known CCs in the LMC from the
OGLE survey (Soszyński et al. 2015) are shown for comparison.
The identification, the period, and the mean visual magnitude, of
the selected CCs are listed in the first three columns of Table 1;
these values were taken from Soszyński et al. (2015). As shown in
Table 1, the selected CC sample encompasses wide ranges of periods
and mean magnitude, thus allowing us to check the predictive
capabilities of the model fitting technique over a large interval of
CC observed properties.

3 TH E M O D E L FI T T I N G T E C H N I QU E

The fitting technique adopted to find the best model reproducing the
observations, is similar to that described in Marconi et al. (2017):

(i) both observed and modelled photometric curves are phased
in order to have the maximum of light at the same phase in a given
reference band: e.g. in this work the maximum of light in the V band
is at phase 0.

3When this work began OGLE IV data were not available. We checked for
possible changes between the two data releases finding that the number of
points in the V and I bands does not increase by more than a few per cents for
most sources in our sample. Only for three stars the photometric observations
increase significantly, but this does not affect the results of our method
because a good phase coverage of light curves was already available in
OGLE III.
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The VMC Survey – XXXV. Modeling LMC Cepheids 4977

Figure 1. Distribution on the sky of the CCs investigated in this paper (the
red filled circles). For comparison, the whole sample of known CCs in the
LMC from the OGLE survey (the black dots) is shown. X and Y are defined
as in van der Marel & Cioni (2001) with α0 = 81◦ and δ0 = −69◦.

(ii) for each modelled photometric band, we estimated the shifts
in magnitude (δμ) and phase (δφ) that provide the best match
between modelled and observed light curves. Specifically, these
two parameters have been obtained by minimizing the following χ2

equation:

χ2 = 1

Nbands

Nbands∑

j

1

N
j

DOF

Nj
pts∑

i

[mj

i −(Mj

mod(φj

i +δφj )+δμj )]2

σ
j

i

, (1)

where the two indices j and i run, respectively, on the number of
bands, Nbands, and on the number of epochs, Npts, the observed
phases, magnitudes, and errors are indicated with φ

j

i and mj

i , σ
j

i ,
respectively, while Mj is the absolute magnitude of the pulsating
model evaluated at the same phase of observations plus the shift δφ.
To evaluate the model at a given phase, the theoretical light curves
have been interpolated using a smooth spline. In the above formula,
the term N

j

DOF = N
j
pts − 2 is the number of degrees of freedom for

the jth band. We note that, because the initial phasing procedure,
described above, is the same for observations and models, the fitted
values of δφ are typically small (∼0.02) and represent just fine-
tuning phase shift values. On the other hand, the fitted parameter
δμj represents the apparent distance modulus in the jth band.

Following the same approach as in Marconi et al. (2017), for each
selected target CC, we built isoperiodic model sequences at fixed
mass, varying the effective temperature and in turn the luminosity
level. This allowed us to obtain a sample of light curve models with
different shapes, magnitudes, and periods. Using this sample of
models, we selected the model best matching the observed curves.
The isoperiodic sequences are built using the typical elemental
composition of the LMC (Y = 0.25; Z = 0.008; see Romaniello
et al. 2008; Luck et al. 1998, for details). Once we found the best-
fitting Te, we built another sample of models varying the mass but
fixing the obtained best-fitting temperature, again selecting the best-
fitting model matching the observed curves. Thus, we were able to
evaluate the mass, the luminosity, the effective temperature of the
star, and in turn its individual apparent distance modulus in each
selected band.

In Fig. 2, we show an example of the model fitting dependence
on the assumed effective temperature (fixed mass M = 4.0 M�)
and stellar mass (fixed Teff = 6175 K). The χ2 analysis for models
with fixed mass identifies as best-fitting effective temperature Teff =
6175 K, as shown in the top panel of the quoted figure. Then varying
the mass (Fig. 2 bottom panels), one obtains the best-fitting value
M = 3.8 M�. Since it is difficult to evaluate by eye the quality of
the fit shown in Fig. 2, in Fig. 3 we show the total reduced χ2 as a
function of the model effective temperature (top) and mass (bottom).

Table 1. Properties of the target CCs and of the associated best-fitting models. From left to right: OGLE identification, observed period, mean V magnitude,
and pulsation mode (from the OGLE III data base Soszyński et al. 2010), best-fitting model mass, luminosity, effective temperature, mixing length parameter,
inferred distance modulus in the V, I, and Ks bands and associated errors, absolute distance modulus with associated error, magnitude correction to refer
distance modulus to LMC barycentre, reddening with associated error, mean radius, and χ2 value. For all CCs, the error in the inferred mass and temperature
is 
T = 25 K and 
M = 0.2 M�, respectively; the assumed composition is Y = 0.25, Z = 0.008, except for OGLE LMC CEP 2019 for which Y = 0.30
(see text).

ID P 〈V〉 Mode M log(L/L�) Teff αML μV μI μK μ0 μcorr
0 E(B − V) R χ2

(d) (mag) (M�) (dex) (K) (mag) (mag) (mag) (mag) (mag) (mag) (R�)

1481 0.922 17.28 FO 3.00 2.62 6650 1.50 19.14 ± 0.10 18.89 ± 0.07 18.49 ± 0.08 18.42 ± 0.09 0.002 0.24 ± 0.05 15.4 0.9
3131 1.095 17.01 FO 2.80 2.63 6450 1.80 18.89 ± 0.05 18.72 ± 0.03 18.52 ± 0.02 18.47 ± 0.02 0.02 0.14 ± 0.01 16.6 1.0
3004 1.524 17.15 F 3.00 2.65 6425 1.60 19.08 ± 0.08 18.86 ± 0.04 18.55 ± 0.01 18.48 ± 0.01 − 0.04 0.19 ± 0.03 17.2 6.0
1523 1.572 16.88 F 2.80 2.64 6425 1.60 18.78 ± 0.08 18.62 ± 0.04 18.44 ± 0.02 18.39 ± 0.02 0.05 0.13 ± 0.02 17.0 3.4
3113 2.068 16.08 FO 5.20 3.15 6300 1.60 19.27 ± 0.05 19.06 ± 0.03 18.77 ± 0.01 18.71 ± 0.01 0.008 0.18 ± 0.02 31.5 1.2
2138 3.011 16.21 F 3.80 3.03 6175 1.70 19.04 ± 0.07 18.85 ± 0.05 18.60 ± 0.05 18.54 ± 0.05 0.04 0.16 ± 0.02 28.7 10.0
3105 3.514 15.38 FO 4.80 3.33 6050 1.60 18.96 ± 0.06 18.82 ± 0.04 18.62 ± 0.03 18.58 ± 0.03 0.011 0.13 ± 0.01 42.2 1.0
0961 3.711 15.87 F 3.90 3.11 6100 1.70 18.90 ± 0.07 18.76 ± 0.06 18.54 ± 0.07 18.49 ± 0.07 0.018 0.13 ± 0.02 32.5 7.4
1475 4.387 15.19 FO 5.60 3.48 5985 1.51 19.14 ± 0.09 19.01 ± 0.08 18.77 ± 0.06 18.73 ± 0.06 0.03 0.13 ± 0.01 51.2 3.2
1124 4.457 15.81 F 5.00 3.29 6040 1.70 19.24 ± 0.08 19.06 ± 0.06 18.79 ± 0.03 18.73 ± 0.03 0.014 0.16 ± 0.02 40.5 13.4
1310 5.126 17.28 FO 5.70 3.54 5950 1.49 18.78 ± 0.04 18.71 ± 0.05 18.60 ± 0.05 18.58 ± 0.06 0.015 0.07 ± 0.01 55.5 2.6
0813 5.914 14.54 FO 7.00 3.66 5850 1.53 18.93 ± 0.07 18.87 ± 0.05 18.75 ± 0.03 18.73 ± 0.03 0.02 0.07 ± 0.01 66.2 4.2
2012 7.458 14.95 F 6.50 3.54 5775 1.90 18.98 ± 0.03 18.88 ± 0.02 18.71 ± 0.01 18.68 ± 0.01 0.008 0.10 ± 0.01 59.4 7.0
1954 12.950 14.61 F 5.30 3.69 5575 1.90 19.00 ± 0.07 18.81 ± 0.05 18.61 ± 0.02 18.55 ± 0.02 0.04 0.14 ± 0.02 75.8 13.4
0546 15.215 14.03 F 5.20 3.77 5575 1.70 18.59 ± 0.11 18.58 ± 0.11 18.57 ± 0.10 18.56 ± 0.11 − 0.003 0.01 ± 0.02 83.9 44.2
1086 17.201 14.35 F 5.40 3.75 5350 1.90 18.86 ± 0.09 18.76 ± 0.08 18.64 ± 0.08 18.61 ± 0.08 − 0.03 0.08 ± 0.02 89.5 17.7
2944 20.320 14.30 F 6.90 3.95 5400 1.84 19.30 ± 0.06 19.15 ± 0.06 18.83 ± 0.07 18.78 ± 0.08 − 0.010 0.17 ± 0.02 108.6 9.3
2019 28.103 13.64 F 7.70 4.11 5425 1.70 19.00 ± 0.07 18.83 ± 0.06 18.67 ± 0.04 18.62 ± 0.05 0.013 0.12 ± 0.02 131.9 5.3
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4978 F. Ragosta et al.

Figure 2. Comparison of the observed V, I, and Ks light curves of the variable OGLE LMC CEP 2138 and the fitted theoretical light curves. Data are plotted
with the grey symbols, while models are plotted with the lines. In the top panels, we show the models calculated assuming a fixed mass, namely (M = 4.0 M�)
and varying effective temperature. Once the model with best Te (namely Te = 6175 K) is found (the solid line), the effective temperature is maintained fixed
at its best value and the χ2 in equation (1) is minimized by varying the mass. Models with varying mass and fixed Te are showed in the bottom panels, where
the final best-fitting model is again indicated with a solid line and is characterized by Te = 6175K and M = 3.8 M�. The χ2 values of the fit are also labelled
in each panel.

Looking at the best χ2 value in the figure and also at those
reported in the Table 1, it is evident that they are not always
close to the expected canonical value χ2 = 1. This is due both
to error underestimation of the observations and to the difficulty to
reproduce exactly light curves with more complex shapes (see also
Fig. 5). The presence of features in the light curves of pulsating
variables, which make them more complex from the shape point
of view, is due to the coupling between pulsation and convection
that becomes more important moving towards the red boundary of
the instability strip (see Bono, Marconi & Stellingwerf 1999, and
references therein). On this basis, we expect a correlation between
the χ2 values and the best-fitting effective temperature in the sense
that lower χ2 values correspond to higher effective temperatures.
This trend is evident in Fig. 4 where the χ2 values of Table 1
are plotted against the best-fitting effective temperature Te,4 with
lager χ2 values populating the zone of lower effective temperaures.
Moreover, a clear separation can be seen between F and FO models,
the latter having smaller χ2 values and as well as known higher
effective temperatures.

4 A PPLICATION TO THE SELECTED
VAR IABLES

The procedure detailed in the previous section was applied to all
CCs in Table 1 and the corresponding models are shown in Fig. 5.

4Note that the source OGLE LMC CEP 0546 does not appear in Fig. 4
because of its χ2 value is out of the y-axis range.

We note that for the longest period CC in our sample (namely
OGLE LMC CEP 2019) we had to vary also the elemental
composition in order to reproduce the observed light curves. For
this star, we adopted Y = 0.30, Z = 0.008. The inferred intrinsic
stellar parameters, namely the effective temperature, the luminosity,
and the mass of the best-fitting models are reported in Table 1 with
their errors.

In particular, the errors on the parameters obtained from the
fitting procedure are estimated as the difference between the best
values and the parameters of the closest models to the best-fitting
one on the mass–temperature grid. As regard the error on the mass
and temperature of the best model, we have adopted the steps of
the mass–temperature model grid (0.2 M� and 25 K, respectively)
generated for our analysis.

The quoted table contains also the unreddened distance moduli
μ0 and the E(B − V) values for all stars considered in this work.
They have been calculated by fitting the Cardelli law (Cardelli,
Clayton & Mathis 1989) to the inferred apparent distance moduli
in the V, I, Ks bands.

A simple statistical analysis of the values reported in Table 1 gives
a mean value of the reddening equal to E(B − V) = 0.13 mag with
a standard deviation of 0.05 mag, while the inferred mean distance
modulus for the LMC is equal to μ0 = 18.59 mag with a standard
deviation equal to 0.12 mag. Weighting the fitted parameters with
their errors provides almost the same values, with mean distance
modulus that is equal to μwt

0 = 18.63 mag (σ wt = 0.10 mag) and
the mean reddening E(B − V)wt = 0.11 mag (σ wt = 0.04 mag).

In order to take into account the effect of the inclination of
the plane of the LMC with respect to the sky on the barycentric
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The VMC Survey – XXXV. Modeling LMC Cepheids 4979

Figure 3. Total reduced χ2 values obtained from the fitting procedure
applied to OGLE LMC CEP 2138 are shown as a function of the model
effective temperature (top) and mass (bottom). The values of the best
effective temperature and mass are indicated by the red dots.

Figure 4. The χ2 values obtained from the fitting procedure and listed
in Table 1 are plotted against the best values of effective temperature for
all sources of the selected sample: F pulsators are shown using the empty
circles, while FOs are plotted with the red triangles.

distance estimation, we have also calculated the magnitude correc-
tions (see Table 1) for every CC of our sample according to the
geometric model by van der Marel & Cioni (2001). A statistical
analysis of the distances obtained by including the quoted correc-
tions does not change the results reported above about the LMC
distance.

As stated in the previous section, the χ2 values exhibit a large
scatter (see Table 1) indicating that the more complex light curve
shapes are modelled with lower accuracy and larger residuals.
Therefore, we decided also to weigh the best parameters using the χ2

values to define the weights (wts = 1/χ2) in order to favour those
models that better describe the observed light curve shapes. The

resulting weighted distance modulus is equal to μ
wt

χ2

0 = 18.56 mag
with a standard deviation σ

wt
χ2 = 0.13 mag. We assume that this

value is our best estimate of the LMC distance. Using the same
χ2-weighted statistics for the excess, we obtain a mean value equal
to E(B − V )wt

χ2 = 0.15 mag with a standard deviation equal to
σ

wt
χ2 = 0.05 mag.

The quoted errors represent only the statistical uncertainities,
while the systematic is difficult to estimate but depends on the
physical and numerical assumptions of the current model sets as
well as on residual uncertainties of the adopted atmosphere models.
Moreover, the above results for the distance modulus do not take
into account projection effects, related to the fact that CCs are not
located at the centre of the LMC.

5 R ESULTS

In this section, we use the results obtained for the intrinsic stellar
parameters of the investigated CCs to determine constraints both on
the predicted MLR and PR relations as well as on the PL and PW
relations, at least for the assumed elemental composition.

5.1 The mass–luminosity relation

Fig. 6 displays the MLR for the investigated CCs whose intrinsic
stellar parameters were derived from the best-fitting models listed
in Table 1. These data are compared with the predicted canonical
(no overshooting, no mass-loss) MLR (Bono et al. 2000; the solid
lines) and with the relations obtained by increasing the zero-
point of the canonical MLR by 0.25 dex (the dashed lines) and
0.5 dex (the dotted lines) to reproduce the effect of mild and full
overshooting,5 respectively (see Chiosi et al. 1993; Bono et al.
1999, for details). Inclusion of mass-loss and/or rotation would
produce a similar increase in the Cepheid luminosity level at fixed
mass (see Neilson et al. 2012, for details). As the light curves of
OGLE CEP LMC 2019 are best reproduced adopting a different
value of the helium content (see above), in Fig. 6 we also show
the MLR for Y = 0.30, Z = 0.008 (the green lines). Note that
this relation is slightly more luminous than those calculated for
the standard LMC elemental composition (Y = 0.25, Z = 0.008).
According to the location of the variables in the ML plane, the
canonical MLR is not strictly satisfied, as the points are spread
between the canonical and full overshooting predictions. Even if
at this stage we cannot disentangle the role of overshooting, mass-
loss, and rotation in producing the quoted excess luminosity, at fixed
mass, the detected dispersion might indicate a combination of these
different non-canonical phenomena. Indeed, if only overshooting
were efficient, one would in principle expect the same amount of
excess luminosity for all stellar masses (within small uncertainties).
Rotation produces similar effects as overshooting because it implies
a larger He burning core and a brighter luminosity at fixed mass (see
e.g. Anderson et al. 2016) On the other hand, if the mass-loss process
were efficient, this could be inferred from the predicted deviation
of the best-fitting stellar mass from the value corresponding to the
canonical MLR. Such a deviation is represented in Fig. 7 as a
function of the canonical mass (top) and of the pulsation period
(bottom) for the CCs in our sample. We note that the expected mass
differences range from 0 per cent to almost ∼ 50 per cent and are
not clearly correlated with the pulsation period or the stellar mass.

5.2 The period–mass–radius and the period–radius relations

Once we obtain the mass and the radius from the output of the
non-linear hydrodynamical code, we are able to correlate them with

5Corresponding to an extension of the extramixing region beyond the
Schwarzschild border of about 0.2Hp, where Hp is the pressure scale height
(Chiosi et al. 1993).
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4980 F. Ragosta et al.

Figure 5. Best-fitting models for all selected CCs compared with the observed light curves. The black lines represent the theoretical models, while the V, I,
and Ks observed light curves are labelled together with star identifications.

the pulsational period for each CC to investigate the PMR relation.
Assuming the linearized equation introduced above, we obtain

log P = (−1.618 ± 0.007) + (−0.68 ± 0.02) log(M/M�)

+ (1.72 ± 0.01) log(R/R�) (2)

with a σ = 0.005 dex. The values of the fitted parameters are in
excellent agreement with those expected from linear theory (see
e.g. Fricke et al. 1972).

If we neglect the mass dependence in the PMR relation, we can
obtain the PR relation, which is also well studied in the literature
(see e.g. Gieren, Moffett & Varnes 1999; Molinaro et al. 2011, 2012,
and references therein). The location of the 18 investigated CCs in
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Figure 6. Predicted MLR based on the model fitting results for both F
(the empty circles) and FO CCs (the red filled triangles). The best-fitting
model location in the MLR plane is compared with an evolutionary MLR
obtained by neglecting mass-loss, core overshooting, and rotation (labelled
‘Canonical’) and with the relations obtained by assuming mild or full
overshooting (see text for detail).

Figure 7. Deviation of the best-fitting stellar mass from the value corre-
sponding to the canonical mass for both F (the empty circles) and FO (the
red triangles) CCs.

the (PR) diagram is shown in Fig. 8, where Fs are plotted using the
empty circles and FOs with the filled triangles; the periods of the
FO pulsators have been fundamentalized using the equation given
by Feast & Catchpole (1997). A linear regression fit to the data
gives us the following PR relation:

log(R/R�) = (0.70 ± 0.02) log(P ) + (1.12 ± 0.01), (3)

which is displayed with a black line in Fig. 8 with a σ =
0.03 dex. The same figure shows, for comparison, the PR relations of
Molinaro et al. (2012; the red line) and Gieren et al. (1999; the blue

Figure 8. The Cepheid PR relation obtained for the selected sample of 18
sources. The CCs are plotted using the empty circles and the filled triangles,
respectively for Fs and FOs; the FO periods have been fundamentalized (see
text). The black line is the result of a linear regression fit to the data (see
text). For comparison the PR relations of Gieren et al. (1999; the blue line),
Molinaro et al. (2012; the red ine) and Marconi et al. (2017; the green line)
are also plotted.

line), based on two different realizations of the Baade–Wesselink
method, and the relation of Marconi et al. (2017; the green line),
which was obtained using the model fitting technique for a sample
of CCs in the SMC. The PR relation of Molinaro et al. (2012)
is based on a sample of 11 CCs belonging to the young LMC
blue populous cluster NGC 1866 and 26 Galactic CCs (see also
Molinaro et al. 2011), while the PR relation of Gieren et al. (1999)
has been derived from a sample of both Galactic and Magellanic
CCs. Inspection of Fig. 8 and a comparison of the coefficients of
the plotted relations reveal that the PR found in this work is in
agreement with those of Gieren et al. (1999) and Molinaro et al.
(2012). In particular, the result of Gieren et al. (1999) predicts a
shallower relation but it is in excellent agreement (1σ ) with our PR,
while the slope of Molinaro et al. (2012) is steeper than that obtained
in this work, though it is consistent within ∼2σ . Concerning the
intercepts of relations, they are in excellent agreement (1σ ) with
that found in this work. The Baade–Wesselink technique is known
to be dependent on the adopted value of the projection factor (p-
factor), which allows to convert spectroscopically measured radial
velocity into pulsational velocity (see Gieren et al. 1999; Molinaro
et al. 2011, 2012; Gallenne et al. 2017; Kervella et al. 2017; Nardetto
et al. 2017, and their references for a discussion). Since the radii
obtained from pulsating models are not dependent on this key
parameter, comparing the results from the two techniques allows
us to put constraints on the p-factor. As for the cases discussed in
this work, Molinaro et al. (2012) adopted a constant p-factor of
1.27, while Gieren et al. (1999) used a period dependent value (p =
1.39 − 0.03log P) from Hindsley & Bell (1986). Since both results
are consistent with the PR obtained from pulsational models, we
are not able to single out one of the two choices as better.

In order to compare the PR relations by Gieren et al. and Molinaro
et al., using the same projection factor, we rescaled first the results
from the former work to the constant p-factor value adopted by
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Figure 9. Predicted PL relation in the V (top), I (middle), and Ks (bottom)
bands based on the model fitting results for both F (the empty circles) and
FO (the red filled triangles) CCs. The three panels show also PL relations
from the literature obtained, namely, by Ripepi et al. (2012b) in the Ks band
(the dashed line) and by Jacyszyn-Dobrzeniecka et al. (2016) in the V and
the I bands (the dotted lines).

Molinaro et al., and then the results from the latter work to the
variable p-factor used by Gieren et al. From this procedure, we can
conclude that the best agreement with the PR relation in equation (3)
is obtained using the visual surface brightness technique from
Gieren et al., but adopting a constant p-factor as in Molinaro et.
al. In particular, in the quoted case we obtain the fitted PR relation
log (R/R�) = (0.699 ± 0.017)log P + (1.11 ± 0.02), which is almost
the same as that of equation (3).

We also compare our PR relation with that of Marconi et al.
(2017), obtained for a sample of SMC CCs using the model
fitting technique. Their fitted relation is given by log (R/R�) =
(0.690 ± 0.017)log P + (1.121 ± 0.016) and is fully consistent
with our result, indicating that samples with different elemental
compositions obey the same PR relation, in agreement with the
theoretical results obtained by Bono, Caputo & Marconi (1998).

5.3 The PL Relation

The mean absolute magnitudes of the best-fitting models can be
correlated with the corresponding periods to build multifilter PL
relations. In Fig. 9, we show the location of both F (the empty
circles) and FO (the red filled triangles) best-fitting models in the
V, I, and Ks bands versus period. In each panel, the solid line
shows the linear regression fit to the data points whose coefficients
are listed in Table 2. To compare our theoretical relations with

Table 2. Coefficients of the inferred period–radius, period–luminosity, and
period–Wesenheit relations (in the V, I, Ks bands), respectively. Columns
4–8 represent the slope (α) and the intecept (β) with their associated errors
(σα , σβ ), and the rms of the residuals around the fitted relation.

Mode Band α σα β σβ rms

PR 0.70 0.02 1.12 0.01 0.03
PL F V −2.63 0.11 −1.54 0.11 0.16

FO −3.10 0.16 −1.95 0.09 0.13
F I −2.93 0.11 −1.95 0.10 0.15

FO −3.38 0.15 −2.38 0.08 0.12
F Ks −3.30 0.09 −2.43 0.09 0.13

FO −3.70 0.14 −2.90 0.07 0.11

PW F W(V, I) −3.39 0.10 −2.58 0.09 0.14
FO −3.83 0.13 −3.06 0.07 0.11
F W(V, Ks) −3.39 0.09 −2.55 0.09 0.13

FO −3.78 0.13 −3.02 0.07 0.11

those obtained by other authors, we have also plotted in the three
panels the PL of Jacyszyn-Dobrzeniecka et al. (2016), in the V
and I bands, and of Ripepi et al. (2012b) for the Ks band. Since
the relations given by Jacyszyn-Dobrzeniecka et al. (2016) contain
apparent magnitudes, we have first corrected them for absorption
using the mean E(B − V) value obtained in this work, and then
shifted them using our best estimate of the LMC distance modulus.
The comparison of the slope values provided by these authors (αF

V =
−2.672 ± 0.006, αFO

V = −3.133 ± 0.006, αF
I = −2.911 ± 0.006,

and αFO
I = −3.240 ± 0.006) shows an excellent agreement in the V

band. For the I band, the two slopes are different, but still consistent
because of our large error. The Ks band PL relations for Fs and
FOs of Ripepi et al. (2012b) contain absolute magnitudes and
consequently can be directly compared with our results in the corre-
sponding band. From this comparison, we found that the coefficients
of their relation (αF

K = −3.295 ± 0.018, βF
K = −2.41 ± 0.03) are

in excellent agreement with our results for F pulsators. As for the
FO mode, their zero-point (βF

K = −2.94 ± 0.07) is in excellent
agreement with our value, while their slope (αF

K = −3.471 ± 0.035)
is consistent with our result within ∼1.5σ .

Inspection of the results in Table 2 also suggests that the derived
rms of residuals around the PL relations are of the same order of
magnitude as that obtained for the obseravtional relations (Ripepi
et al. 2012b; Jacyszyn-Dobrzeniecka et al. 2016).

5.4 The Wesenheit relation

Finally, it is interesting to compare the PW relations found in this
work with those adopted in the literature (e.g Ripepi et al. 2012b;
Jacyszyn-Dobrzeniecka et al. 2016). To estimate the Wesenheit
magnitudes for the optical and NIR data, we use the following
definitions: W(V, I) = I − 1.55 × (V − I) and W(V, Ks) = Ks −
0.13 × (V − Ks), according to recent prescriptions in the literature
(see e.g. Soszyński et al. 2015; Ripepi et al. 2016, and references
therein). The PW relations for the investigated CCs are shown in
Fig. 10, where the symbols have the same meaning as in Fig. 9.
The bottom panel shows the relation obtained by combining optical
and NIR bands, and the top panel shows the same relation obtained
using only optical bands. The linear regression fits to the data are
also shown (the solid lines) and the coefficients are reported in
Table 2.

The PW equations in the optical bands are provided by Jacyszyn-
Dobrzeniecka et al. (2016) and are based on apparent magnitudes.
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Figure 10. Predicted PW relations in the V, I (top) and V, Ks (bottom) filters
for both F and FO pulsators. Symbols are as in the Fig. 9. For comparison
with literature results, in the top panel we show also the relation of Jacyszyn-
Dobrzeniecka et al. (2016; the dot–dashed lines), while in the bottom panel
we plot the relations of Ripepi et al. (2012b; the dashed lines).

In order to compare them with the results obtained in this work,
we have shifted their F and FO relations using our best estimate
of the LMC distance modulus μ = 18.56 mag. Looking at the top
panel of Fig. 10, we note that the relations for F Cepheids are in
excellent agreement, being almost coincident, while the theoretical
FO PW relation seems to be steeper than the relation by Jacyszyn-
Dobrzeniecka et al. (2016). Indeed, their slope αFO

W (V ,I ) = −3.414 ±
0.007 differs from our estimate by more than 3σ .

The W(V, Ks) relations provided by Ripepi et al. (2012b) are
expressed using absolute magnitudes and consequently can be
directly compared with our results. Their equation for F pulsators
(W(V, Ks) = (−3.325 ± 0.014)log P + (−2.59 ± 0.03)) is in
excellent agreement with our result (see Table 2), with both slope
and intercept being consistent within less than 1σ . The coeffi-
cients of their FO equation (W(V, Ks) = (−3.530 ± 0.025)log P
+ (−3.10 ± 0.07)), are consistent with our estimates
within ∼1.5σ .

6 C O N C L U S I O N S

We considered a sample of 11 F and 7 FO CCs in the LMC with op-
tical photometry from the OGLE III data base and NIR photometry
from the VMC survey. By assuming first approximation elemental
composition typical of LMC CCs (Y = 0.25, Z = 0.008), for each
selected pulsator, we built isoperiodic model sequences varying the
intrinsic stellar properties (effective temperature, mass/luminosity)
in order to match the period, and the shape of the observed
light curves in the V, I, and Ks bands. The resulting models
directly provide information on the mass, the effective tempera-
ture, the luminosity, and in turn the individual distance of each
selected target VMC CC. On this basis, we obtained the following
results:

(i) From the inferred apparent distance moduli, adopting the
extinction law by Cardelli et al. (1989) we obtained an estimate

of the intrinsic distance modulus for every star in our sample. We
decided to weigh these values using the best-fitting χ2 to give
and an estimate of the LMC distance modulus. Our procedure
provides a value of μ0 = 18.56 mag with a standard deviation
of 0.13 mag, in agreement with the most recent literature values
(Marconi & Clementini 2005; Marengo et al. 2010; Ripepi et al.
2012a; Pietrzyński et al. 2013; de Grijs, Wicker & Bono 2014;
Jacyszyn-Dobrzeniecka et al. 2016). We note that our best value
for the LMC distance modulus is in perfect agreement with the
results of one of our previous applications (18.53 ± 0.05 mag
Bono et al. 2002) and the estimate by Keller & Wood (2006),
18.54 ± 0.018 mag, obtained using a similar approach for a sample
of bump Cepheids covering a pulsation period range centred on 10 d,
an almost complementary range compared to the sample analysed
in this work.

(ii) Considering the geometric correction according to the model
by van der Marel & Cioni (2001) in the estimation of the LMC
distance has no effect on the quoted results.

(iii) the MLR is clearly more luminous than the evolutionary
MLR that neglects overshooting, mass-loss, and rotation, thus
suggesting a high efficiency of at least one of these non-canonical
phenomena.

(iv) A PR relation in agreement with the literature results, in
particular with the relation of Gieren et al. (1999).

(v) Theoretical PL relations in the V, I, and Ks bands adequately
reproduce the observed intrinsic scatter of the PL distribution.

(vi) Theoretical PW relations are in agreement with the empirical
LMC Wesenheit relations recently presented by Ripepi et al.
(2012b).

We note that for one long-period Cepheid we needed to vary
the elemental composition in order to obtain a satisfactory fit. In
particular for CC OGLE CEP LMC 2019 an enhanced helium
abundance Y = 0.30 was required in order to fit the observed curve.
The possible presence of a fraction of helium enriched CCs has
been recently theoretically investigated by Carini et al. (2017),
following previous indications of the presence of multiple stellar
populations in young LMC star clusters (see e.g. Milone et al.
2016, and references therein).

In the future, we also plan to extend the application to other
samples of pulsators in order to better constrain their PL and
PW relations and to test the accuracy of the method through
application to the light curves of Galactic CCs with Gaia par-
allaxes (Gaia Collaboration 2018). The latter comparison, once
we have fixed the distance to the Gaia results, will also allow
us to put strong constraints on the predicted stellar masses, the
MLR, and, once the metallicity is precisely constrained by com-
plementary spectroscopic data, the helium to metal enrichment
ratio.
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