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Abstract

Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly
used. In this paper we analyze the impact of the transponder delay, i.e. the processing time between reception and re-emission of
a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially
accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high
nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth
flybys, the NASA GRAIL and the ESA BepiColombo missions.
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1. Introduction

Accurate tracking of probes is one of the key points of space
exploration. Several radio tracking strategies are possible to de-
termine the trajectory of interplanetary spacecraft, but Doppler
and Range techniques are the most commonly used. Precise
orbits are then the basis of many scientific applications, from
geodesy and geophysics to the study of planetary atmospheres,
the correct interpretation of instrument data up to fundamental
physics experiments.

Range accuracy improved by one order of magnitude dur-
ing the last 10 years (from 1 meter for the NASA Cassini probe
- Hees et al. (2014c) - to 10 cm for the ESA BepiColombo
mission - Milani et al. (2001); Genova et al. (2012)) while,
thanks to the development of X- and Ka-band transponders,
Doppler accuracy increased drastically from ≈ 10 mHz for Pi-
oneer Venus Orbiter (≈ 1.5 mm/s @ 2.2 GHz, Konopliv et al.,
1993) to the µHz level for BepiColombo and for Juno (≈ 35
nm/s @ 8.4 GHz, Galanti et al., 2017). Improvements in the
technical accuracy of these observables result in better con-
straints on their scientific interpretation and have consequences
in several domains. For this reason, a continuous effort is nec-
essary to keep up the modeling with the increasing accuracy of
instruments and mission goals.

In both Range and Doppler techniques, tracking signals are
exchanged between an antenna on Earth and the probe. The
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standard light-time formulation by Moyer (2003) accurately de-
scribes how to model this exchange and the resulting observ-
ables. However, the small time delay between the reception
of the tracking signal on the probe and its re-emission back to
Earth is currently neglected in the two-way Doppler formula-
tion, while it is introduced as a simple calibration in the two-
way range (Montenbruck and Gill, 2000; Moyer, 2003). This
time delay, which we call ”transponder delay”, represents the
response time of the transponder electronics and it is around
several µs for modern transponders (Busso (TAS-I), 2010).

In this paper, we analyze the impact of including this term in
the mathematical formulation of computed light-time and deep
space Range and Doppler observables with the goal of improv-
ing the agreement between computed and observed quantities in
the orbit determination process. Section 2 briefly summarizes
the standard modeling as given by Moyer (2003). Then, in Sec-
tion 3 we describe the introduction of the transponder delay in
light-time modeling and in Section 4 its impact on the range
and Doppler observables. Section 5 provides some examples
of the impact of the additional terms in several configurations
such as an Earth swing-by, NASA GRAIL (Zuber et al., 2013)
and ESA BepiColombo missions. Finally, in Section 6 we sum-
marize our final remarks.

2. Standard modeling of light time for radioscience observ-
ables

The standard approach for space navigation is presented in
Moyer (2003). It provides the formulation for observed and
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computed values of deep space navigation data. Only a cursory
description is provided as required by the scope of this paper.

Orbit Data File (ODF) tracking data consist of time series
of observed Range or Doppler counts. Both these observables
can be computed as functions of the time of flight of the signal
between the observing station and the probe, provided auxiliary
information, e.g., Doppler emitted frequency and count times,
are available in the ODF. Moyer (2003) designates the trans-
mission time from Earth of the up-leg link as t1, the epoch of
reception and immediate re-transmission as t2 and finally the
reception time of the down-leg link on ground as t3. At each
of these epochs the Solar System Barycentric (SSB) position
vectors of the up-link station x1, spacecraft x2 and down-link
station x3 must be calculated.

All coordinates presented in this paper, unless differently
stated, are defined in the Barycentric Reference System (BCRS,
Petit and Luzum, 2010), while all epochs are consistently given
in the Barycentric Dynamical Time (TDB, Petit and Luzum,
2010). Moreover, we shall neglect all transformations between
coordinate and proper times, since the relative modification would
be at most 10−8, which is fully negligible.

Range observables are related to the distance between ob-
server and receiver, while Doppler observables (in the Moyer’s
sense of instantaneous Doppler shifts averaged over a time in-
terval Tc) provide a constraint on their relative radial velocity.
These so called computed observables are then used in the orbit
recovery process by means of a least square fit to the tracking
observations .

2.1. Round-trip light time

The key point for the computed observables is to properly
describe the round trip time of flight ρ of the light signal. The
standard formulation by Moyer (2003) gives

ρ =
R12

c
+

R23

c
+ RLT12 + RLT23 + δρ (1a)

where

R12

c
= t2(ET ) − t1(ET ) =

‖x2 − x1‖

c
, (1b)

R23

c
= t3(ET ) − t2(ET ) =

‖x3 − x2‖

c
, (1c)

and RLTi j is the Shapiro delay (Shapiro, 1964) on the up-leg
and down-leg light time solutions. Moreover, we noted δρ the
additional delays (e.g., atmospheric and instrumental delays at
ground stations) and ET the ephemeris time. Since modern
ephemeris also define the TDB consistently with planetary ephe-
meris (e.g., Fienga et al., 2009; Folkner et al., 2014), from now
on we set ET=TDB.

Also, one should correct the reception time for the distance
between the antenna receiver and the station clock. For a space-
craft light-time solution, the reception time t3R is usually given
in Station Time (ST) at the receiving electronics. The trans-
formation between ST (usually Coordinated Universal Time,
UTC) and ET/TDB is provided in (Petit and Luzum, 2010).
One should then correct for the down-leg delay at the receiver

Spacecraft Launch TD Source
MPO 2018 4.8-6 †

Herschel 2009 5.2 †

Planck 2009 5.2 †

MRO 2005 1.4149 JPL
Venus Express 2005 2.085 ESOC/FD

Messenger 2004 1.371 ?

Rosetta 2004 4.8-6 †

Mars Express 2003 2.076 ESOC/FD
Mars Odissey 2001 1.4266 JPL

Cassini 1997 4.8-6 †

MGS 1996 0.7797 MGS Project

Table 1: Transponder Delay (TD, µs) for several probes (MPO = BepiColombo
Mercury Planetary Orbiter, MRO = Mars Reconnaissance Orbiter, MGS =

Mars Global Surveyor, † = Busso (TAS-I) (2010), ? = Srinivasan et al. (2007)).

δt3 to get the reception time t3(S T ) at the tracking point of the
receiver as

t3 = t3R − δt3 . (2)

The same also applies to the emission time t1. Since one does
not know the time of reception and re-transmission t2, the latter
is usually determined by iteratively applying Eq. (1), i.e., by
first considering t2 ≡ t3 to compute ρ, then setting t2 ≡ t3 − ρ.

3. Improved light time modeling

The standard formulation presented in Section 2 implies an
instantaneous retransmission of the signal towards Earth after
reception at the spacecraft. In reality, a small delay due to the
transponder electronics should be accounted for, which is not
provided in the standard auxiliary data. We report in Table 1
this transponder delay for several probes, as calibrated by in-
dustrials on ground before the launch.

Let us note ∆τ this delay in terms of local proper time at
the moment and location of the calibration. In our modeling,
we have introduced the transponder delay δt23 in the BCRS be-
tween reception and remission events at the probe. In principle,
we should relate the calibrated transponder delay ∆τ with δt23.
However, the impact of this additional correction shall prove
negligible for our purpose, so that in the following δt23 ≡ ∆τ.

3.1. Studied setup

To take into account the transponder delay in the formu-
lation of the light time solution, we need one supplementary
event concerning the probe. Let us now consider four events
quoted as t̃l. The transmission epoch from Earth is quoted t̃1,
t̃2 is the epoch when the probe received the up-link signal, t̃3
is the epoch of transmission of the transponded signal towards
the Earth and finally t̃4 is the epoch of reception of the down-
link signal at receiving Earth ground station. We consistently
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note as xl̃ the corresponding position vectors of tracking sta-
tions and probe. The light-time solution is composed of three
steps: first we have to determine from the knowledge of the
reception event by the Earth receiver the coordinate quantity
t̃4 − t̃3, then to calculate t̃2 − t̃1. The third component deals with
the internal electronics delay on-board the probe t̃3 − t̃2, i.e. all
kinds of delay between the up-link reception and the down-link
emission.

Our final goal is to express the coordinate quantity ρ̃ = t̃4−t̃1
which is simply t̃4− t̃1 = (t̃4− t̃3)+(t̃3− t̃2)+(t̃2− t̃1). Let us quote
the coordinate-dependent quantity t̃3− t̃2 by δt23. The quantities
t̃2 − t̃1 and t̃4 − t̃3 can be expressed as

t̃2 − t̃1 = Tr
(
t̃2, x1̃, x2̃

)
, (3a)

and
t̃4 − t̃3 = Tr

(
t̃4, x4̃, x3̃

)
, (3b)

where we used the time transfer functions Tr introduced in pre-
vious publications (Teyssandier and Le Poncin-Lafitte, 2008;
Hees et al., 2014b). These functions essentially represent the
light travel time between two events in a relativistic framework
and have an analytical solution at several levels of approxima-
tion (e.g.,up to the third post-Minkowskian approximation for a
static space-time (Linet and Teyssandier, 2013) and at the first
post-Minkowskian/post-Newtonian approximation for a set of
moving axisymmetric bodies (Bertone et al., 2014; Hees et al.,
2014a)). Hence, at the post-Newtonian level of approxima-
tion usually adopted in space navigation for a stationary gravity
field, one gets

Tr

(
ti, xi, x j

)
=

Ri j

c
+ RLTi j + O

[
c−4

]
. (4)

It is then straightforward to define the modified round-trip
light time ρ̃ ≡ t̃4 − t̃1 + δρ as

ρ̃ = δt23 + Tr
(
t̃2, x2̃, x1̃

)
+ Tr

(
t̃4, x4̃, x3̃

)
+ δρ , (5)

where we noted δρ the additional delays (e.g., atmospheric and
instrumental delays), supposed equivalent to those given in Eq. (1a).

3.2. Comparison to the standard formulation
As we have seen in Eq. (1a), the traditional approach used

by navigators does not consider the transponder delay in the
light time formulation. This results in rewriting Eq. (1a) as

ρ = Tr (t2, x2, x1) + Tr (t3, x3, x2) + δρ , (6)

consisting only in three events t1, t2 and t3. A relation between
the t̃l events of our proposed setup and the tl of the standard
setup is easily established by setting (similarly to what pro-
posed in a different context by Degnan, 2002)

t̃4 = t3 , (7a)
t̃3 = t2 , (7b)
t̃2 = t̃3 − δt23 = t2 − δt23 (7c)

and

t̃1 = t1 − ∆ρ , (7d)

where we used ∆ρ = ρ̃ − ρ ≡ (t̃4 − t̃1) − (t3 − t1) as well as
Eq. (7a). As a consequence, we also get

x2̃(t̃2) = x2(t2 − δt23) , (8a)
x1̃(t̃1) = x1(t1 − ∆ρ) . (8b)

Thus, it is straightforward to analyze the difference between
Eq. (5) and Eq. (6). Since the transponder delay δt23 is roughly
equal to several µs (see Table 1), we perform a Taylor expansion
of Eq. (5) and we introduce Eqs.(7)-(8), such that

ρ̃ = Tr (t2 − δt23, x2 − v2δt23, x1 − v1∆ρ) + δt23

+Tr (t3, x3, x2) + δρ

= Tr (t2, x2, x1) + δt23 + Tr (t3, x3, x2) + δρ

−δt23
∂Tr (t, x2, x1)

∂t

∣∣∣∣
t=t2

−δt23 vi
2
∂Tr (t2, x, x1)

∂xi

∣∣∣∣
x=x2

−∆ρ vi
1
∂Tr (t2, x2, x)

∂xi

∣∣∣∣
x=x1

+ O
[
(δt23,∆ρ)2

]
≡ ρ − δt23

∂Tr (t, x2, x1)
∂t

∣∣∣∣
t=t2

−δt23 vi
2
∂Tr (t2, x, x1)

∂xi

∣∣∣∣
x=x2

(9)

−∆ρ vi
1
∂Tr (t2, x2, x)

∂xi

∣∣∣∣
x=x1

+ O
[
(δt23,∆ρ)2

]
,

where vl = {vi
l} is the coordinate velocity of the probe at instant

tl. It is worth noting that since an analytical formulations of the
time transfer function Tr is available at various level of approx-
imation, Eq.(9) can be easily adapted for increasing accuracies.
For this application it is sufficient to expand Tr using Eq. (4),
which finally gives

∆ρ = ρ̃− ρ = δt23

(
1 +

(v1 − v2) · N12

c

)
+O

[
(δt23)2, c−2

]
(10)

with
N12 ≡

x2 − x1

‖x2 − x1‖
.

While the constant term δt23 is usually calibrated in the com-
puted Range, Eq. (10) highlights the presence of an extra non-
constant term, directly proportional to the transponder delay
and neglected in Moyer’s model. This term also depends on the
position and velocity of both the probe and the ground station.

It can be physically interpreted as a modification of the de-
termination of the state vector at transponding event of coor-
dinate time t2 or as an imprecise determination of the time t2.
Both range and Doppler are then affected by this mismodeling,
as we show in Section 4.

4. Impact on Range and Doppler computed observables

Based on the standard and modified formulation of the light
time ρ and ρ̃, respectively, we derive additional terms appearing
in Range and Doppler observables.

The computed Range Observable R is simply given by

R = Kρ , (11)

3



  

where K is a conversion factor. Depending on the processing
strategies, the transponder delay δt23 is either added to ρ or es-
timated together with other error sources in a so called ”range
bias”. However, both these solutions do not fully account for
the impact of the transponder delay as given by Eq. (10), in
particular regarding the time dependent terms.

Regarding Doppler, the basic idea is to measure the fre-
quency shift based on the emission and reception times of a
series of signals over a given time interval. Several configu-
rations are possible. Two and three-way Doppler (in the lat-
ter the signal is emitted and received by different stations) are
usually ramped, meaning that the emitted frequency fT changes
with time following a piecewise linear function of time. For our
purpose, we consider a simple modeling of unramped two-way

Doppler F2, such that
∂ fT
∂t

= 0. Hence,

F2 =
M2 fT

Tc
(ρe − ρs) , (12)

where M2 is a multiplying factor related to the transponded fre-
quency and ρe and ρs are the light-times of two signals whose
receptions are separated by a ”counting time” Tc, typically of
the order of 10 − 60 s.

The difference between computing a Doppler observable
with the two formulations presented in this paper is then given
by introducing Eq. (10) into Eq. (12) as

∆F2 = F̃2 − F2

=
M2 fT

Tc

[
(ρ̃e − ρ̃s) − (ρe − ρs)

]
(13)

=
M2 fT

Tc

δt23

c

[
(ve

1 − ve
2) · Ne

12 − (vs
1 − vs

2) · Ns
12

]
.

The transponder delay δt23 itself is simplified when differenc-
ing, but not its impact on the Doppler frequency. Indeed, the
epochs at which both the spacecraft and ground station posi-
tions are evaluated in the uplink change.

5. Numerical applications

In this section we present some examples to analyze the
impact of the transponder delay δt23 in some realistic config-
urations. First, we compute the time dependent terms given
in Eqs. (10) and (13) during the Earth flyby of several probes.
Then, we show how the transponder delay can be easily intro-
duced in the processing pipeline of Doppler data by explicitly
adding a constant δt23 to the light-time algorithm as in Eq. (7c),
thus retrieving the probe trajectory at a (slightly) different epoch.
We perform the latter test on the GRAIL and BepiColombo
missions within the planetary extension of the Bernese GNSS
Software (BSW, Dach et al., 2015), mainly based on Moyer
(2003) for the computation of deep space observables (Bertone
et al., 2015).

5.1. Application to Earth flybys
In order to evaluate the magnitude of the additional term in

Eq. (10), we compute ∆ρ = ρ̃ − ρ and its time derivative ∆ρ̇ =

˙̃ρ− ρ̇ =
∆F2

M2 fT
, i.e., the difference between the range-rate calcu-

lated by the two models. We consider several probes (Rosetta,
NEAR, Cassini, Galileo) during their Earth flyby, which is a
particularly favorable configuration thanks to the quick changes
in the relative velocity vector between probe and antenna. Also,
close approaches are an important source of information when
measuring the geophysical parameters of a celestial body. We
use the NAIF/SPICE toolkit (Acton et al., 2011) to retrieve the
ephemeris for probes and planets to be used in the computation.
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Figure 1: Light time difference ∆ρ (meters - hours from flyby) during NEAR
Earth flyby.
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Figure 2: Range-rate difference ∆ρ̇ (mm/s - hours from flyby) during NEAR
Earth flyby.

We fix δt23 = 10 µs and compute Eq. (10) and its time
derivative from Eq. (13) for the NEAR probe during its Earth
flyby on 23 January 1998. We find a difference of the order of
some cm for the probe distance c∆ρ calculated by the two mod-
els (when subtracting the constant δt23 bias) and a difference
up to several 10−2 mm/s at the instant of maximum approach
for its velocity. These results are shown in Figures 1 and 2 for
Tc = 1 s. We note that changing the integration time Tc only
has a significant impact when it becomes larger than several
minutes. Also, results for other δt23 values can be easily de-
duced as ∆ρ and ∆ρ̇ are directly proportional to the transponder
delay. The amplitude of such effects are in principle within the
nominal accuracy of future missions expected to perform Earth
gravity-assist maneuvers, such as BepiColombo.
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In order to highlight the high variability of the transponder
delay effect on Doppler measurements, we also compute ∆ρ̇
for different probes in different configurations with respect to
the observing station. The results displayed in Figure 3 show
that this delay cannot be simply calibrated by adding a constant
Range bias and hint that it should be carefully dealt with for the
Doppler computation.
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Figure 3: Doppler difference ∆ρ̇ (mm/s - hours from Earth flyby) for several
probes with respect to Goldstone DSN station. The results highlight the high
variability of the effect on Doppler measurements.

A preliminary study presented in Bertone et al. (2013) com-
pared the results of this section with the so called flyby anomaly
(Anderson et al., 2008) but found the mismodeling of the trans-
ponder delay to possibly account only for a few percent of it.

5.2. Application to GRAIL Doppler and KBRR data
Here, we use the BSW to process two-way S-band Doppler

data and to retrieve GRAIL-A and GRAIL-B orbits around the
Moon for several days of the primary mission phase. In partic-
ular, we selected both days when the orbital plane was parallel
(days 63-64 of year 2012) and when it was perpendicular (days
72-73 of year 2012) w.r.t. the line of sight between the satel-
lites and the Earth. We fit a set of 6 orbital elements in daily
arcs using GRGM900C (Lemoine et al., 2014) up to d/o 600 as
background gravity field. We first use the standard modeling
for light time and Doppler and then compute alternative orbits
by adding an arbitrary transponder delay of 2.5 µs to the light-
time computations. The resulting orbit differences for the two
satellites are shown in Table 2 and are well within the uncer-
tainty value of the orbit recovery (estimated in several cm in
radial direction and ≈ 1 m in the other directions).

Based on both orbit pairs, we then compute the Ka-band
inter-satellite Range-Rate (KBRR), i.e. the radial velocity along
the line-of-sight between the two satellites. Their difference
shows a once-per-revolution signal with an amplitude of ≈ 0.1−
1 µm/s in the along-track direction due to the mismodeling of
the transponder delay. For completeness and to evaluate the im-
pact of the transponder delay on the operative orbit recovery of
the GRAIL probes, we perform a further orbit improvement by
fitting both pair of orbits to Doppler and KBRR data. The rela-
tive weighting of these observables is usually chosen to strongly
favor KBRR data (here we apply a 1 : 108 ratio) because of
their higher accuracy. A comparison of the resulting orbits then

DOY GRAIL Radial Along-Track Cross-Track
12-063 A 0.08 0.62 2.96

B 0.11 1.43 1.12
12-064 A 0.10 1.79 7.29

B 0.10 0.67 2.72
12-072 A 0.08 1.11 0.10

B 0.18 0.60 0.14
12-073 A 0.04 0.16 0.45

B 0.04 1.01 0.87

Table 2: Orbit differences (mm, orbit frame) caused by introducing the
transponder delay in the Doppler modeling for the orbit improvement process.
During Day of Year (DOY) 12-063/064 the orbital plane of the GRAIL satel-
lites is parallel to the line of sight w.r.t. Earth, while it is perpendicular for DOY
12-072/073.

shows that post-fit KBRR differences due to the transponder
delay are reduced to ≈ 0.001 µm/s (to be compared with the
nominal KBRR accuracy of 0.03 µm/s). KBRR residuals re-
sult globally improved by our updated light-time algorithm, but
well below the formal uncertainties.

5.3. Application to ESA BepiColombo mission

We use the BSW to simulate two-way X-band Doppler for
BepiColombo Mercury Planetary Orbiter (MPO) nominal or-
bit retrieved from ESA Spice SPK for 08/04/2025. We first
compute Doppler data as observed by the Deep Space Network
antennas following the standard formulation by Moyer (2003).
Then, we include the transponder delay in the light-time model-
ing used for the simulation. We compute the resulting Doppler
signal for several values of δt23 in the range 10−6 − 10−3 s and
show the differences w.r.t. the standard formulation in Fig. 4.
As shown in Table 1, MPO transponder delay has been mea-
sured at 4.8 − 6 µs.
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Figure 4: Doppler difference ∆ρ̇ for the nominal MPO orbit around Mercury
on 08/04/2025 for different values of the transponder delay δt (1 mHz ≈ 0.035
mm/s @ 8.4 GHz).

Our results highlight an additional frequency signal super-
posed to the orbital period and showing an amplitude linearly
dependent from δt23, as expected from Eq. (10). The amplitude
of the additional signal, neglected in the standard formulation,
is up to several mHz for slow transponders (δt ≈ 1 ms) while it
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accounts for ≈ 0.02 mHz for modern transponders (δt ≈ 2.5 µs).
These values should be compared to the nominal accuracy of
the MORE instrument (Iess and Boscagli, 2001), which is ≈ 5
mHz and ≈ 1.5 mHz at 10 seconds integration time for X- and
Ka-bands, respectively (Cicalò et al., 2016). The impact of the
transponder delay looks then safely below the noise level for
the BepiColombo mission in its science phase.

6. Conclusions

In this communication, we present a refinement of the for-
mulation of two-way light-time for the tracking of space probes.
In particular, we focus on the transponder delay, a tiny delay
(amounting to several µs in modern devices) between the recep-
tion of the signal on the spacecraft and its re-emission towards
Earth. It seems obvious from our results that the influence of
the transponder delay cannot be reduced to a simple correction
with a constant bias without taking some precautions. It is in-
deed responsible for a tiny effect on the computation of light
time and has an impact on both range and Doppler determina-
tion. We take it into account by a more complete modeling,
considering four events in the observables modeling instead of
three as in Moyer.

In order to test the amplitude and variability of this effect on
real data, we compute its influence on some real probe-ground
station configurations during recent Earth flybys (NEAR, Roset-
ta, Cassini and Galileo). The observables calculated using the
standard model and our updated one show differences of the
order of several cm and of 0.1 mm/s for the range and the
range-rate, respectively. As expected from our analytical re-
sults, the impact of the transponder delay is maximized during
a flyby maneuver, when the relative velocity between space-
craft and observer changes rapidly. Nevertheless, as already
shown in Bertone et al. (2013), this effect can only account for
a tiny portion of the so-called flyby anomaly. Moreover, we
use the planetary extension of the Bernese GNSS Software to
simulate the impact of several amplitudes of the transponder
delay on both Doppler data and orbit recovery for the NASA
GRAIL and ESA BepiColombo missions. To do so, we mod-
ify the light-time computation algorithm for the up-leg by re-
questing the probe ephemeris at an epoch anticipated of δt23.
The highlighted differences are acceptable for most operational
goals at present, although applying a more accurate modeling
could avoid the possible propagation of orbital errors in, e.g. the
recovery of geophysical signatures or the analysis of tiny rela-
tivistic signals (Matousek, 2007) which could correlate with the
effects of the transponder delay. Also, since the MORE instru-
ment on-board BepiColombo will be equipped with an internal
calibration circuit, it will be possible to measure the transpon-
der delay and to systematically apply the updated formulation
provided in this paper to test the impact on the data processing.

Finally, we stress that this error is directly proportional to
the transponder delay. This means that this effect might be
relevant for past missions equipped with slower transponders
(whose data are still largely used for scientific purposes) or
for long lasting missions when considering the degraded per-
formances of aging transponders. In the future too, increas-

ing spacecraft tracking accuracy (Iess et al., 2014) should be
accompanied by the development of faster transponders or by
correctly measuring, distributing and accounting for this delay
in the orbit determination process.
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