
Accepted Manuscript

DePhine – The Deimos and Phobos Interior Explorer

Jürgen Oberst, Kai Wickhusen, Konrad Willner, Klaus Gwinner, Sofya
Spiridonova, Ralph Kahle, Andrew Coates, Alain Herique, Dirk Plettemeier,
Marina Díaz Michelena, Alexander Zakharov, Yoshifumi Futaana, Martin
Pätzold, Pascal Rosenblatt, David J. Lawrence, Valery Lainey, Alison Gibbings,
Ingo Gerth

PII: S0273-1177(17)30916-X
DOI: https://doi.org/10.1016/j.asr.2017.12.028
Reference: JASR 13561

To appear in: Advances in Space Research

Received Date: 28 April 2017
Revised Date: 14 December 2017
Accepted Date: 21 December 2017

Please cite this article as: Oberst, J., Wickhusen, K., Willner, K., Gwinner, K., Spiridonova, S., Kahle, R., Coates,
A., Herique, A., Plettemeier, D., Díaz Michelena, M., Zakharov, A., Futaana, Y., Pätzold, M., Rosenblatt, P.,
Lawrence, D.J., Lainey, V., Gibbings, A., Gerth, I., DePhine – The Deimos and Phobos Interior Explorer, Advances
in Space Research (2017), doi: https://doi.org/10.1016/j.asr.2017.12.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.asr.2017.12.028
https://doi.org/10.1016/j.asr.2017.12.028


  

 -------------------------------------------------------------------------------------------------------------      

 

1 

DePhine – The Deimos and Phobos Interior Explorer 

 

 
Jürgen Oberst 

German Aerospace Center (DLR), Institute of Planetary Research *, Berlin, Germany and Technical 

University Berlin, Institute of Geodesy and Geoinformation Science, Berlin, Germany 

Kai Wickhusen, Konrad Willner, Klaus Gwinner 

German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstr. 2, D-12489 Berlin, 

Germany 

Sofya Spiridonova and  Ralph Kahle 

German Aerospace Center (DLR), Space Flight Technology, D-82234 Oberpfaffenhofen-Wessling, 

Germany 

Andrew Coates 

MSSL-UCL Mullard Space Science, Laboratory University College London Holmbury St Mary Dorking, 
Surrey, RH5 6NT, UK 

Alain Herique 

Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France 

Dirk Plettemeier  

Technische Universität Dresden, Professur für Hochfrequenztechnik, Würzburger Str. 35, D-01187 

Dresden, Germany 

Marina Díaz Michelena 

Space Programs and Space Sciences Department, Instituto Nacional de Tecnica Aeroespacial (INTA), 

Madrid 28850, Spain  

Alexander Zakharov 

Space Research Institute of the Russian Academy of Sciences, Profsoyuznaya ul. 84/32, 117997 Moscow, 

Russia 

Yoshifumi Futaana  

Swedish Institute of Space Physics, Box 812, SE-98128 Kiruna, Sweden 

Martin Pätzold 

Rheinisches Institut für Umweltforschung,Universität zu Köln,D-50931 Köln Germany  

Pascal Rosenblatt 

Royal Observatory of Belgium (ROB), Av. Circulaire 3, B-1180 Uccle, Belgium 



  

 -------------------------------------------------------------------------------------------------------------      

 

2 

David J. Lawrence  

Space Department, The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins 

Road, Laurel, MD 20723, USA 

Valery Lainey 

Institut de Mécanique Céleste et de Calcul de Ephémérides, Observatoire de Paris, UMR 8028 du CNRS, 

UPMC, 77 Av. Denfert-Rochereau  

Alison Gibbings and Ingo Gerth 

OHB System AG, Universitätsallee 27-29, D-28359 Bremen, Germany  

 

 

*) Corresponding Author:  

Jürgen Oberst 

German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstr. 2, D-12489 Berlin, 

Germany 

Juergen.Oberst@dlr.de, +49 30 67055-336 

 

Abstract 
DePhine – Deimos and Phobos Interior Explorer – is a mission proposed in the context of ESA’s Cosmic 

Vision program, for launch in 2030. The mission will explore the origin and the evolution of the two 

Martian satellites, by focusing on their interior structures and diversity, by addressing the following open 

questions: Are Phobos and Deimos true siblings, originating from the same source and sharing the same 

formation scenario? Are the satellites rubble piles or solid bodies?  Do they possess hidden deposits of 

water ice in their interiors?   The DePhine spacecraft will be inserted into Mars transfer and will initially 

enter a Deimos quasi-satellite orbit to carry out a comprehensive global mapping.  The goal is to obtain 

physical parameters and remote sensing data for Deimos comparable to data expected to be available 

for Phobos at the time of the DePhine mission for comparative studies.  As a highlight of the mission, 

close flybys will be performed at low velocities, which will increase data integration times, enhance the 

signal strength and data resolution. 10 – 20 flyby sequences, including polar passes, will result in a dense 

global grid of observation tracks. The spacecraft orbit will then be changed into a Phobos resonance orbit 

to carry out multiple close flybys and to perform similar remote sensing as for Deimos.  The spacecraft 

will carry a suite of remote sensing instruments, including a camera system, a radio science experiment, 

a high-frequency radar, a magnetometer, and a Gamma Ray / Neutron Detector. A steerable antenna will 

allow simultaneous radio tracking and remote sensing observations (which is technically not possible for 

Mars Express).  Additional instrumentation, e.g. a dust detector and a solar wind sensor, will address 

mailto:Juergen.Oberst@dlr.de
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further science goals of the mission.  If Ariane 6-2 and higher lift performance are available for launch 

(the baseline mission assumes a launch on a Soyuz Fregat), we expect to have greater spacecraft mobility 

and possibly added payloads.  

 

1 Introduction  

DePhine – the Deimos and Phobos Interior Explorer – has been proposed as M-class mission in the 

context of ESA’s Cosmic Vision program, with the spacecraft projected for launch in 2030.  The mission 

will explore the origin and the evolution of the Martian natural satellites and will also contribute to the 

general questions of planetary formation and the workings of the solar system.  Up to the present day, 

the origins of Phobos and Deimos are uncertain.  They may have co-accreted with the parent planet 

(Safronov and Vitjazev, 1986), or formed from Martian impact basin ejecta (Citron et al., 2015; Craddock, 

2011; Rosenblatt and Charnoz, 2012; Rosenblatt et al., 2016).  Alternatively, they may represent 

captured primitive asteroids or comets (Burns, 1992).  Clues on the origins of the satellites may come 

from comparative studies of whether Phobos and Deimos are true siblings, originate from the same 

source and share the same formation scenario and history.  Other clues may come from investigations of 

the interior structures of the satellites, e.g., to resolve whether the satellites are rubble piles or solid 

bodies, or whether they possess hidden deposits of water ice in their interiors. 

The DePhine spacecraft will initially enter a quasi-satellite orbit of Deimos to carry out a comprehensive 

remote-sensing campaign. The spacecraft will then move into an orbit in resonance with Phobos to carry 

out multiple flybys and to perform remote sensing experiments similar to those for Deimos to enable 

comparative studies.  The spacecraft will carry a suite of remote sensing instruments, including a camera 

system, a radio science experiment, a high-frequency radar, a magnetometer, and a Gamma- 

Ray/Neutron spectrometer (GRNS).  In addition, the spacecraft will be equipped with dust detectors and 

a solar wind sensor. 

2 Science Cases 

The mission aims at investigations of the origins of the two satellites, by an in-depth study of the 

diversity of Deimos and Phobos. Quite naturally, the mission will first focus on Deimos, to obtain its 

physical parameters and characteristics, at a level comparable to information already available for 

Phobos.  In particular, we wish to determine the properties of the Deimos soil to enable comparisons 

with Phobos samples, expected to be available at the time of DePhine from the upcoming Phobos 

sample return missions such as MMX (Fujimoto, M. 2017; Kuramoto et al., 2017).  In addition, the 

mission will focus on the interior structures of both satellites. 

2.1 Science Case 1:  Interior Structure of Deimos and Phobos  

The DePhine spacecraft will address the question of interior structure by various techniques, including 

gravity field mapping to high degree and order, direct radar observations to infer the structure of the 

upper layers of the moons, studies of rotational dynamics, magnetic sounding, and gamma-ray / neutron 

flux detections. 
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2.1.1 Mass and Gravity Field 

The knowledge of the gravity field when combined with other bulk parameters, such as shape, volume, 

bulk density, porosity, and water ice content are key information for models of internal mass 

distribution, structure, composition, and Deimos/Phobos origins. Using data from X-band radio tracking 

during recent spacecraft flybys, especially by Mars Express (Andert et al., 2010; Pätzold et al., 2014b; 

Rosenblatt et al., 2008), the mass of Phobos has been estimated as 1.065 ± 0.016 1016 kg (Pätzold et al., 

2014a). The higher degree and order terms of the gravity fields (e.g., the C20 and the C22 terms) of Phobos 

suffer from large uncertainties (Pätzold et al., 2014b), due to the faint gravity signatures, the high 

spacecraft flyby speeds and the large flyby distances.  Besides, even though the Phobos ephemeris has 

improved over the years (Lainey et al., 2007; Jacobson, 2010; Lainey et al., 2016), the Phobos positions 

relative to the spacecraft during the flybys were poorly known. For Deimos, only rough mass estimates 

from the early Viking flybys and from secular modeling are available, i.e., 1.51 ± 0.04 1015 kg (Jacobson, 

2010).   

DePhine will move in “quasi satellite orbits” (see description later in the text), close to Deimos and 

Phobos, supported by optical navigation.  Benefitting from a state-of-the art radio science experiment, 

even small spacecraft trajectory perturbations are revealed by the Doppler shift of the radio carrier.  

Effects of non-gravitational perturbations, e.g. solar radiation pressure and atmospheric drag as well as 

spacecraft control maneuvers (or wheel-off-loadings), will be carefully modeled in the process. 

While the current knowledge of Phobos’ mass has an uncertainty of about 18% (and higher order gravity 

parameters have uncertainties larger than the actual derived values) (Pätzold et al., 2014), the DePhine 

radio tracking will determine the mass at an accuracy of 0.01 %, the second degree and order gravity 

field coefficients at 1 % accuracy and the degree and order five gravity field coefficients at 50 % accuracy.   

2.1.2 Shape and Rotation  

Early attempts to derive Deimos and Phobos shape models were based on Mariner 9 and Viking TV 

camera images. These included tri-axial ellipsoids (Duxbury, 1974) or spherical harmonics 

representations. Duxbury (1991) determined over 300 control points, to solve for a Phobos shape model 

represented by of a spherical harmonics function with degree and order 8.  Primarily based on limb as 

well as terminator observations Simonelli et al. (1993) and Thomas (1989) derived a 2° x 2° gridded 

shape model. The models have a relative accuracy ranging between +/-70 m and +/-50 m with locally 

larger uncertainties due to limited surface coverage. Willner et al.(2010; 2014) produced Phobos shape 

models using image data from the High Resolution Stereo Camera (HRSC) (Jaumann et al., 2007) and the 

Super Resolution Channel (Oberst et al., 2008) on-board the Mars Express spacecraft. A gridded Digital 

Terrain Model (DTM) (grid spacing: 100 m; relative accuracy: 25 m) and a spherical harmonic model 

(degree and order 45) were derived (Willner et al., 2014).  With improved shape models, Phobos is 

estimated to have a volume of 5742± 35 km3 (Willner et al., 2014). The volume of Deimos has been 

determined from Viking images as 1017 ± 130 km3 (Thomas, 1993).  

Both, Deimos and Phobos are in a locked rotation. Owing to their odd shapes and their slightly elliptic 

orbits, the satellites are undergoing physical librations.  The librational amplitude of Phobos was 
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determined from direct observations and control point tracking by Mars Express and Viking Orbiters 

(Burmeister et al., 2014; Oberst et al., 2014; Willner et al., 2010) as well as from the effect on Phobos’ 

orbital motion (Jacobson, 2010; Lainey et al., 2016).  Reported libration amplitudes vary from 0.99° to 

1.2° ± 0.15°, corresponding to a displacement at the equator of approximately 230 to 280 m. For Deimos, 

moving at larger distance from Mars in an orbit of smaller eccentricity, the amplitude of libration is 

predicted from the given orbit, gravitational interaction with Mars, and the shape model as 0.2° (20 m at 

the equator) (Rubincam et al.,1995), which remains to be verified. 

DePhine will survey Deimos systematically and globally with a higher resolution than any other 

spacecraft before, which will result in higher-accuracy on both, shape and rotation parameters. For 

example,  DePhine will allow to derive volume estimates for Deimos with uncertainties in the order of 1% 

and better (currently above 10%) and a first observation of the librational motion of Deimos will be 

possible. For Phobos, DePhine will collect high-resolution topographic data, especially during the very 

close and low-velocity flybys, which will refine our shape models and fill gaps in our current coverage. 

 

2.1.3 Interior Models  

Our current knowledge about the interiors of Deimos and Phobos is almost entirely based on indirect 

conclusions from estimates of mass, shape, and rotation.  From the improved mass and the volume of 

Phobos and Deimos, the bulk densities of the two satellites have been estimated as 1.860 +/- 0.02 g/cm3 

(Willner et al., 2014) and 1.48 +/- 0.22 g/cm3 (Rosenblatt, 2011) respectively, suggesting that their 

interiors have a high porosity and/or contain water ice (Avanesov et al., 1991; Murchie et al., 1991). The 

respective required porosity ranges are between 10-30% (Murchie et al., 1991) and 33-66 % (Rosenblatt, 

2011), which are comparable with porosities of small-sized asteroids (Britt et al., 2002). This attests to an 

accretion process in which large blocks form an initial core with abundant voids that smaller debris are 

unable to fill andwould support origin scenarios from a planetary debris disk (Citron et al., 2015; 

Craddock, 2011; Rosenblatt and Charnoz, 2012; Rosenblatt et al., 2016).  The low density can also be 

explained by sufficient water ice in the satellite interiors, depending on rocky material density and 

porosity. Detection of ice repositories would provide a strong constraint on the moons origins. However, 

neither the proportions of rock and water nor the origin of Deimos and Phobos can be constrained by 

the bulk density alone (Pätzold et al., 2014a; Rosenblatt, 2011). 

Phobos’ shape models together with models of rock-water ice mixtures have been used to predict 

moment of inertia coefficients of the satellite (Willner, 2009; Rosenblatt et al., 2009).  These may be 

tested against observed Phobos libration amplitudes and gravity field coefficients, following dynamic 

theories (Borderies and Yoder, 1990). However, the observed shape models, libration amplitudes and 

the (poorly constrained) gravity parameter C20 can be brought in agreement with a wide variety of 

compositional models including a homogeneous mass distribution.  Also, knowledge of obliquity, i.e., the 

tilt of the rotational axis with respect to the orbit plane is critical, which is currently assumed to be zero. 
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2.1.4 The DePhine mission will improve our knowledge on the interior structure, mass 
distribution, shape, and volume by various techniques leading to improvements in 
uncertainty i.e. for the bulk density of Deimos by at least 10% to 1% or better. 
Subsurface Structure 

In order to discriminate among the various formation scenarios of the Martian satellites, sophisticated 

experiments directly observing the interior are needed that constrain the subsurface structure and bulk 

compositional elements.  Secondary radar echoes were revealed by MARSIS on Mars Express (Picardi et 

al., 2004) during Phobos flybys, but analyses of the data remained inconclusive.  Shape models of Phobos 

were used to produce simulations of radar backscattering to separate surface from subsurface echoes 

(Plettemeier et al., 2009). Unfortunately, no echoes could be positively identified as coming from the 

subsurface.  This can be attributed to the comparably large flyby distances to Phobos and the high 

relative velocities between spacecraft and target of 3 km/s limiting the performance of MARSIS by short 

effective integration times.  The horizontal resolution of MARSIS in combination with the irregular shape 

of Phobos resulted in a Signal to Noise Ratio (SNR) of 25 dB in this best case, while a SNR of 50 dB has 

been achieved with MARSIS on a flat Mars surface under similar conditions.  In addition, Phobos’ 

fragmentation might be invisible to the MARSIS radar as fragment block sizes might be smaller than the 

applied wavelength (50-150 m). Furthermore, rocks with high metal content and carbonaceous 

chondrites are materials known with high dielectric loss properties resulting in possible signal absorption 

by Phobos’ loose material.   

The DePhine spacecraft will overcome the issues experienced with Mars Express flybys. The quasi 

synchronous orbit allows for longer integration times as the relative velocity will be in the order of less 

than 5 m/s. The radar package consists of a high frequency and low frequency channel optimised for the 

DePhine mission (see Section 4.1). 

Magnetic field measurements can be used to support subsurface sounding and determine the 

conductivity or resistivity of the body’s interior based on the induced response to the variable 

environment (Constable and Constable, 2004). The measurements indicate the intensities and spatial 

variability of remnant magnetic characteristics of the exposed surface as well as rocks down to several 

kilometers below the surface (Veselovsky 2004). The detection of a remnant magnetic signature on these 

moons would support the hypothesis of an impact-related formation scenario, during which magnetized 

crustal rocks (Acuña et al. 1999) were ejected from Mars as a consequence of the large impact event, 

and re-accreted in orbit (Citron et al. 2015; Ramsley & Head 2013a; Rosenblatt et al 2016). In contrast, 

the lack of a magnetic signature would give arguments in favour of the captured asteroids formation 

scenario. For example, magnetic investigations during the Rosetta mission document that primitive 

planetary rocks, such as the carbonate chondrite of 67P/Churyumov-Gerasimenko, do not have any 

significant remnant magnetism (Auster et al. 2015).  

Measurements of the intensity and orientation of the remnant magnetic signatures will allow us a 

mapping of minerals with remnant magnetism for both moons. In concert with shallow surface radar and 

gravity data the magnetometer measurements will improve the knowledge on compositional variations 
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of different types of rocks as well as ice and/or voids (e.g. Basilevsky et al. 2014, Pieters et al. 2014). This 

will support advanced models of the moons’ structures and new scenarios for their origins.  

2.1.5 Bulk Chemistry 

The competing theories for the formation and early evolution of Mars’ moons make distinct predictions 

for their present-day surface composition (e.g., Murchie et al., 2015), and measurements of elemental 

compositions can distinguish between competing hypotheses of Phobos’ and Deimos’ origin (Figure 1). 

  

Figure 1: Measurements of Fe, Si, and O to distinguish between competing hypotheses of Phobos’ and 
Deimos’ origin (Figure adopted from Peplowski et al., 2015) 

Gamma-ray and neutron spectrometer measurements can therefore test the existing formation models 

for Phobos and Deimos.  For example, measurements of Fe, Si, and O concentrations can place Phobos 

and Deimos on the plot of Figure 1, which discriminates between the differentiation state of materials 

(i.e. achondrites vs chondrites), and by extension, separates out different formation scenarios.  

Measurements of additional elements (H, Mg, and K) as well as thermal, epithermal, and fast neutrons 

(Elphic et al., 2016) can provide the additional information needed to constrain the formation scenarios 

of Phobos and Deimos. 

Gamma-ray and neutron spectroscopy represent established techniques for characterizing the elemental 

composition to tens of centimeters depth of planetary surfaces from orbit (see Section 4.4).  Detected 

gamma-ray and neutron fluxes are converted to elemental concentrations using standard techniques 

(Lawrence et al., 2013; Peplowski et al., 2012).  Note that DePhine currently does not foresee carrying a 

spectrometer, which would map the abundance of mineral compounds of very-near-surface regolith 

layers only.   

2.2 Science Case 2:  Deimos and Phobos Diversity 

Perhaps the one most intriguing single observational fact in the question for the origin of the Martian 

satellites is that there exist two of them – not more and not less!  Comparative studies of the two 

satellites will very much help understanding their formation.  Are the two satellites siblings that have 

Achondri c	(differen ated)	composi on:	
supports	giant	impact	

Ordinary	chondri c	composi on:	supports	
in-situ	accre on	or	

capture	on	inner	solar	system	object	

Carbonaceous	chondri c	composi on	–	supports	
capture	of	outer	solar	system	object	

Achondri c/Chondrite	
mixing	line	-	supports	giant	
impact	(w/	mixing	from	

impactor)	
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originated from the same source and by the same process?  Or did they form separately through 

different events at different times? 

The two satellites are generally similar but also strikingly different in some details. Both move in near-

circular near equatorial orbits about Mars.  However, Phobos is moving deep inside the Mars-

synchronous orbit (subject to tidal decay and disruption), whereas Deimos is moving safely outside the 

synchronous orbit.  The spectral characteristics of Phobos and Deimos – spectral slopes and absorption 

bands – are similar (Freaman et al., 2014).  Also, both satellites show a low albedo (Pieters et al., 2014). 

However, the bulk densities differ substantially (Murchie et al. 2015).  The visual appearance of the 

surface morphologies are quite different as well.  Currently, meaningful comparisons between the two 

satellites are difficult, as the data volumes and knowledge is far more limited for Deimos.  The 

comparative studies are aggravated as both satellites are affected differently by their environments.  

Phobos moves deep in the gravity field of Mars and is much affected by gravitational interaction in the 

satellite system. Mars ejecta is certainly deposited on Phobos and may or may not have formed the 

prominent groove structures (Murray and Heggie, 2014; Murray and Iliffe, 2011; Ramsley and Head, 

2013a; b). Both, Phobos and Deimos are differently affected by the meteoroid bombardment from 

various solar system sources. Solar wind interacts with the surfaces in complex ways and is responsible 

for effects of space weathering. 

2.2.1 Orbital Motions and Gravitational Interactions 

The orbits of Phobos and Deimos are highly indicative for various dynamic parameters of the Martian 

satellite system.  Because the static gravitational field of Mars is well constrained today, it is the gravity 

fields of the moons themselves, simultaneously with their physical libration, that will be accurately 

quantified from the satellites’ secular orbital motion. DePhine data will tightly constrain the gravity fields 

of the bodies.   

2.2.2 Meteoroid Flux from Crater Statistics and Dust Impact Detections 

Small and large meteoroids from various solar system sources intercept the Martian satellite system, as 

attested by the large numbers of impact craters on Mars, Phobos, and Deimos.  While the impact craters 

represent a powerful tool to study surface ages, craters can also be used to study the characteristics of 

the impactor population (Christou et al., 2014).  As Phobos and Deimos are both locked in their orbits, 

impact rates and speeds vary across the surfaces of the satellites. 

Christou et al., (2014) simulated the production of craters on Phobos from the sporadic flux of Mars-

crossing asteroids and comets predicting a significant difference in the crater production rate on the 

leading and trailing hemisphere of Phobos.  While the current crater statistics (limited by strong 

observational biases in the image data) do not support such a difference, accurate global crater counts 

by DePhine down to the smallest sizes will constrain this important effect.  For unknown reasons, 

Deimos presents a lower number of large-sized impacts than Phobos (Thomas et al., 1992; Thomas et al., 

1996). 

Mars and its satellites should also intersect a number of meteoroid streams produced by comets. 

However, the predicted timing and geometry of the stream encounters (see Christou et al., (2014) and 
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references therein) have not been observationally confirmed to-date. Such streams affect the Martian 

upper atmosphere in a measurable way (Grebowsky et al., 2002; Molina-Cuberos et al., 2003), as was 

directly observed during the recent close encounter of comet C/Siding Spring with Mars.  Our 

observations will constrain the flux of exogenous material to the Martian atmosphere and surface, 

including the delivery of organic compounds.  DePhine will study the meteoroid encounters by using two 

complementary techniques:  On one hand, we will study the crater population and size frequency 

distributions of craters on both satellites by imaging.  We will search for hemispheric asymmetries in the 

distributions of the craters. On the other hand the dust detector in orbit will allow us to directly measure 

the mass distributions and motion vectors of smaller meteoroids.   

2.2.3 Ejecta Production, Re-Accumulation, and Ring Formation 

Large blocks and boulders of meter-scale cover the surface of Phobos, probably representing ejecta from 

impacts at the large end of the size scale, in particular from formation of crater Stickney.  However, due 

to the observations from varying spacecraft ranges, only small areas on Phobos could be imaged at 

sufficient resolution for detection of blocks and boulders. In fact, almost all data have been obtained 

during a unique Phobos flyby of the Mars Reconnaissance Orbiter in 1998 (Thomas et al., 2000).  

DePhine, under suitable lighting conditions, will enable surface coverage for both moons with a globally 

uniform image resolution (<4 m/pixel; see Section 4.2). Thus, in contrast to previous missions, DePhine 

images will provide unbiased maps of block abundances, which will allow us to test hypotheses for the 

sources of blocks and the dynamics of their emplacements. 

In addition to the above-mentioned bombardment by meteoroids (10-18 g < mass < 102 g, velocity of 

about 15 km/s), the surfaces of Phobos and Deimos are exposed to solar ultraviolet radiation, solar wind 

plasma, and cosmic rays. The sputtering causes dust particles from the regolith to be ejected from the 

surface and to escape.  With ejection- larger than escape velocity (about 10 m/s for Phobos and about 6 

m/s for Deimos), but smaller than the orbital speed of the moons (VPh=2.1 km/s for Phobos and VD=1.35 

km/s for Deimos), particles should remain trapped in the Martian satellite system.  Theoretical models 

(Banaszkiewicz and Ip, 1991; Ip and Banaszkiewicz, 1990; Ishimoto and Mukai, 1994; Juhász and Horányi, 

1995; Kholshevnikov et al., 1993; Krivov and Hamilton, 1997) suggest that these dust grains form rings or 

tori along the orbits of the satellites.   

Although the existence of such dust rings near Phobos/Deimos orbits has been predicted more than 40 

years ago (Soter, 1971), no confirmed observations of rings or tori are available.  Evidence for the 

presence of a dust or gas in the moons’ orbits, related to a possible outgassing from their surfaces, may 

come from magnetic field observations.  Fanale and Salvail (1989) did not find any evidence for 

outgassing from Phobos.   With no detection of oxygen ions from a distance of 100 km, the upper limit 

for Phobos outgassing is set at < 1020 s-1.  A detection was reported by Dubinin et al., (1990; 1991) and 

Baumgärtel et al., (1998) using the Phobos-2 magnetometer data. On the contrary, Øieroset et al., (2010) 

found no direct evidences in the Mars Global Surveyor magnetometer data to support the idea of a 

significant outgassing or dust escape from the Phobos surface. More direct observations attempts by 

cameras also have remained inconclusive.  The cameras on Viking 1 Orbiter and the Hubble Space 

Telescope (HST) lacked the required sensitivity (Krivov et al., 2006), while the Mars Express SRC (Super 
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Resolution Channel) suffered from image blur and straylight (Oberst et al., 2008).  DePhine is moving in 

favorable rendezvous orbits for new efforts to detect dust rings by its onboard camera. The spacecraft 

data will deliver new models and bounds for volatiles near the surface and outgassing.  Also, DePhine will 

study the population of micrometeoroids by means of a dust detector. Encounters with meteoroid 

streams will temporarily bolster the ejecta production rate from the surfaces of the moons. In turn, this 

will generate a proportionate enhancement on the density of the Phobos/Deimos dust tori (Zakharov et 

al., 2014) and lead to increased impact rates on the detector.  

2.2.4 Ejecta from Mars 

Phobos and Deimos, moving close to Mars, almost certainly have accumulated Mars ejecta in the past. 

Dynamic studies suggest that regolith may contain 0.0002 % to 0.025 of Mars material (Chappaz et al., 

2012; Ramsley and Head, 2013a), with the thickness of deposited regolith layers varying from the near to 

the far side (Thomas et al., 2000).  Hence, space explorers have identified Phobos and Deimos as targets, 

from where recovery of Martian samples may be comparably straightforward.   

Investigators suggest that the various families of Phobos grooves may have formed as a result of such 

ejecta (Murray and Heggie, 2014). Alternatively, grooves may be surface manifestations of a global 

fracture pattern that pervades Phobos’ interior (Asphaug and Melosh, 1993; Fujiwara and Asada, 1983). 

Recent theoretical work has reproduced similar formations on Vesta as the result of shear deformation 

following a large impact (Stickle et al., 2015; Scully et al., 2014).  We will test this scenario by 

determining the internal structure of Phobos by radar.  Like in the case of the craters, the current 

statistics of grooves suffer from observational biases. Also, with the current limited observational data, 

no grooves have been identified on Deimos.  The camera will carefully map the surfaces of the two 

satellites to establish unbiased catalogs and maps of grooves.  Using crater statistics, we may identify the 

sequence of groove formations and families of common origin.  Spectral data and albedo patterns, which 

represent different mineral and physical properties of the regolith, will help in the mapping of the 

grooves (Longobardo et al., 2015).  Studies of groove morphology will allow us to test their proposed 

origins. 

Using radar mapping from orbit, we will assess regolith thickness for Phobos and Deimos, and variations 

of regolith thickness of near and farside.  Using GRNS (Gamma Ray and Neutron Spectrometer) mapping 

from orbit, DePhine will be able to constrain the abundance of Mars material in the regolith, as GRNS 

may be able to discriminate between chemical compositions on the near- and farside, polar, and 

equatorial areas.   

2.2.5 Regolith Formation  

Studies of the Phobos’ surface by OMEGA spectrometer on Mars Express (Fraeman et al., 2012; Gondet 

and Bibring, 2010) reveal that the surface is covered by a thick regolith layer, which appears rather 

uniform.  In fact, the surface on Deimos appears smoother than the surface of Phobos, implying that 

morphologic features on Deimos have been gardened more effectively by impact ejecta and mass 

movements or that they simply never formed.  The DePhine camera system will study the morphology of 

the Martian satellites to determine regolith characteristics, and to identify creep or mass wasting 
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processes. Using the radar and GRNS experiments, DePhine will measure regolith thickness, its porosity, 

and elemental abundances. Multiple imaging at different phase angles will be used to study photometric 

properties for interpretations of the physical properties of the surface regolith.  The DePhine mission will 

provide the first opportunity to study the nature of space weathering effects on the Martian Moons. The 

HFC (High-Frequency Channel) radar will permit to study the relevant surface processes on these objects. 

The presence of large grains and blocks (cm to m) as well as peculiar regolith processes (migration, 

sorting) can be determined through the HFC observables (presence of layering, variation in the intensity 

of the radar echo, presence and distribution of radar scatters in the subsurface).   

2.2.6 Tidal Interaction and Processes 

The orbit of Phobos is known to decay due to tidal interaction with its parent planet Mars (Bills and 

Comstock, 2005; Burns, 1978).  Hence, Phobos is experiencing increasing tidal forces, associated with 

accelerated rotation rate and centrifugal forces, which have been demonstrated to affect surface 

processes (Davis et al., 1981; Thomas, 1993). Studies of Mars Express high-resolution image data suggest 

that the evolution of Phobos’ dynamic environment has triggered landslides on crater walls (Shi et al., 

2016), perhaps as recently as within the past 108 years.  The effects may be responsible for observed 

asymmetries for many of the Phobos’ craters. Unfortunately, detailed studies of the surface of Phobos – 

not to mention Deimos – are hampered by the limited resolution and coverage of spacecraft images as 

well as the limited topographic data. DePhine will provide new and updated shape models for Deimos 

and Phobos, respectively, along with gravity field models, from which slopes (and evolution of dynamic 

slopes over time) may be determined.  We will search for slopes near angle of repose and associated 

landslides.  We will use high-resolution imaging to provide a complete global mapping of landslides 

associated with crater statistics to determine ages of such landslides and the associated time scales of 

processes. 

2.2.7 Solar Wind Interaction 

The surfaces of Deimos and Phobos are exposed to the solar wind.  Multispectral observations reveal 

obvious effects of “space weathering” in areas where recent resurfacing is known to have exposed fresh 

material. Spacecraft spectral measurements for the surfaces of the satellites reveal two materials 

distinguished mainly by slope of the spectral continuum: a “redder” unit that dominates Deimos and is 

also present on Phobos, and a “bluer" unit excavated from depth on Phobos by the formation of Stickney 

crater (Murchie and Erard, 1996; Murchie et al., 1991; Rivkin et al., 2002; Thomas et al., 2011).  Both 

Phobos' redder unit and Deimos indicate absorptions due to Fe-phyllosilicate near 0.65 µm (Murchie et 

al., 2008) and possibly olivine/pyroxene near 1 µm (Gendrin et al., 2005). Thermal infrared spectra show 

emission features consistent with phyllosilicates (Giuranna et al., 2011).  Unfortunately, multispectral 

data for Phobos (not to mention Deimos) are limited in spatial resolution and do not show the needed 

details of fresh surface exposures on impact craters or mass wasting features.  While DePhine does not 

carry a spectrometer system, the spacecraft onboard camera with its multiple color channels will be able 

to identify “red” and “blue” units and outline their extent at high spatial resolution.  Thus, we may 

resolve local resurfacing events and improve our understanding of space weathering effects.  By studying  

color variations in the context of geologic settings, it will be possible to understand whether observed 

color variations are related to exogenous or endogenous processes  
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As part of studying the diversity of Deimos and Phobos, DePhine will also more directly study the solar 

wind interactions. The two satellites are small non-conductive rocky bodies and normally expected to 

fully absorbing plasma impinging on them.   However, recent Lunar missions, Chandrayaan-1 and Kaguya, 

discovered that the lunar regolith reflects only few % protons (Saito et al., 2008), but backscatters up to 

20 % hydrogen (Wieser et al., 2009).  A similar effect may be expected for the regolith surfaces of the 

Martian satellites.  Indeed, backscattered protons were tentatively observed during a Phobos flyby of 

Mars Express from a distance of ~500 km, with a backscattered efficiency of 0.5-10 % (Futaana et al., 

2010). Surprisingly, no such disturbance was observed during the closest-ever flyby on December 29, 

2013, 07:09 UT at a distance of 58 km from the center of Phobos. This may be due to low solar wind 

speed and Phobos being likely inside the induced magnetosphere.  Hence, the interaction of Phobos and 

Deimos with the environment and how plasma interacts with their regolith surfaces remains to be 

established.   

Further clues on how plasma interacts with the regolith surfaces and on surface weathering processes 

may come from magnetic field investigations.  Solar wind sputtering is a significant mechanism, which 

may alter surface properties (Murchie et al., 2014; Pieters et al., 2000) and release surface material to 

contaminate the surrounding environment as, e.g., in case of Mercury’s polar regions (Paral et al., 2010). 

Also, a local field produced by magnetic anomalies could affect the surface properties as seen in the 

form of “swirls” on the Earth’s Moon (Bhardwaj et al., 2015).  However, the data coverage of currently 

available magnetic field observations for Phobos and Deimos is very limited and longer period 

observations from quasi-orbital motion are needed in order to see the relevant magnetic signatures. The 

magnetometer will also measure intensities and variation of external magnetic field of the satellites at 

different distances over the time of the mission. Such external magnetic signatures are generated by the 

interaction of the moons ionospheres with the solar wind (e.g. Baumgärtel et al. 1998; Øieroset et al. 

2010, Poppe et al. 2015). The results of these measurements will contribute to the interpretations of the 

ionosphere composition derived from analyses of other instruments data and the dust analysis (Zakharov 

et al. 2014).  DePhine will address the question of how the solar wind interacts with Phobos’ regolith and 

how this might depend on solar activity or surface characteristics.  

 

3 Mission Profile 

3.1 Launch and Cruise 

We anticipate a launch by ESA’s future Ariane 6-2 vehicle, but unfortunately confirmed data about the 

Ariane 6-2 lift performance are not yet available for reliable mission planning at this stage.   We adopt a 

Soyuz-Fregat launcher as the baseline, with which we can achieve a mission, which is technically feasible 

and which can accomplish all science goals well within the cost cap of the M5 program (550 Mio Euro).  If 

Ariane 6-2 with improved performance becomes available, we propose an upgrade and modified mission 

profile (see further below). 

The DePhine spacecraft will be launched into a Mars Transfer Orbit (MTO) with 1.5 revolutions about the 

sun.  With the general time window given for the M5 mission opportunity (and with reasonable delta v), 
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this is the only viable transfer solution.  Our baseline launch is on September 23, 2030, with hyperbolic 

excess velocity vinf = 3.727 km/s and a Declination of the Launching Asymptote (DLA) of -1.8°.  At this 

launch opportunity, the Soyuz launch vehicle will be able to inject a total S/C mass of ~1493 kg into MTO 

(including launch error margin).  Several other opportunities for launch exist in 2030, days before and 

after the nominal launch date, which feature quite similar transfer time and spacecraft carrying capacity.  

No mission opportunity exists until two years after (2032), when a launch window opens again, which we 

consider as a backup.  Here again, mission profile and spacecraft performance are similar to the nominal 

mission scenario.  

While the Earth departure velocity will be provided by the launch vehicle, mid-course corrections and 

orbit insertion are performed through spacecraft thrusting maneuvers. For Mars capture with C3=0 

km²/s² (parabolic orbit), a total velocity increment (∆v) of 670 m/s is required. We add a margin of 10% 

for “gravity loss” (accounting for non-zero duration of thrusting maneuvers) and other uncertainties. We 

choose an initial elliptical 300 km x 150,000 km orbit (height above ground) about Mars (similar to the 

arrival orbit of Mars Express) and perform a small inclination change to match Mars’ equatorial plane, 

which requires an additional 81 m/s, to which we add a margin of 5%. This leads to a total ∆v of 822 m/s, 

required for full orbit insertion.  Mars orbit insertion is on January 30, 2033. 

3.2 Science Mission Baseline 

In this initial high elliptical orbit, maneuvers are performed, which will adjust inclination, raise the 

periapsis and circularize the orbit of the spacecraft to enable a Deimos rendezvous and begin its science 

mission in March 2033.  After 10 months of operations at Deimos, DePhine will change from its near-

circular into an elliptic Mars orbit to carry out repeated encounters with Phobos for another 9 months.  

The mission will end in September 2034, just before Mars enters superior conjunction, when 

communication with Earth is disrupted. The total mission duration is 4 years (see Figure 2). 
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Figure 2: Mission timeline 

 

3.3 Deimos Quasi-Satellite Orbit 

   

 

Figure 3: Quasi-Satellite Orbit and example of flyby maneuver (distance to surface, color-coded) 

 

 

   

Figure 4: DePhine orbit (white) in 2:1 resonance with Phobos, with respect to the orbits of Deimos 
(green) and Phobos (blue ) 

Due to the low mass of the Martian satellites and the strong perturbation by Mars’ gravity field, it is not 

possible to orbit the moons directly. Instead, DePhine will move in Quasi-Satellite Orbits (QSOs), which 

are in 1:1 resonance with the satellite orbits about Mars, but have slightly different inclinations and 

eccentricities.  The orbital parameters of the Deimos QSOs are chosen such that the distance from the 

surface to DePhine will vary between 8 and 12 km, at relative speeds of 2-3 m/s and such that sub-

spacecraft points move between 30° latitudes North and South (“quasi” inclination of 30°).  Our 

numerical simulations, which were carried out using a variety of Deimos gravity field models, planetary 
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perturbations, and radiation pressure effects, reveal that this orbit is stable over time scales of more 

than one year. Therefore, only minimal orbit correction maneuvers are needed during this phase.   The 

spacecraft will gradually approach Deimos from the arrival orbit to finally enter the QSO.   Approach 

distances to Deimos will be reduced, as the mission proceeds and gravity field knowledge of Deimos 

improves. 

During the QSO mission phase, the spacecraft will carry out special flyby maneuvers of Deimos at 

selected orbital/solar phases, which enable approaches within 1-2 km at flyby speeds of 3-4 m/s.  Each 

flyby requires a small thrusting maneuver with a typical ∆v of 5-8 m/s.  The flyby “event” lasts about 3-5 

hours, after which the spacecraft returns to the stable QSO (see Figure 3). During the flybys, the radar, 

magnetometer, gamma-ray and neutron spectrometer as well as the camera will operate 

simultaneously, while the spacecraft will maintain the radio link with Earth for performing the radio-

science experiment. This will require the spacecraft attitude guidance to maintain instrument pointing at 

Deimos, while maintaining Earth pointing of the steerable antenna.  In the mission baseline we foresee 

ten flybys, requiring 86 m/s of ∆v.   

The simultaneous radio tracking and image data acquisition allow us to make precise reconstructions of 

the flyby trajectories with respect to the targets.  Otherwise, as in the case of Mars Express, currently the 

only spacecraft to carry out Phobos flybys on a regular basis, the flyby trajectory must be reconstructed 

from the tracking data before and after the flyby in combination with target ephemeris knowledge, a 

procedure sensitive to systematic errors. 

 

3.4 Phobos Phase 
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Figure 5:  Polar flybys at Phobos.  Spacecraft ground tracks in the body-fixed (top) and inertial 
reference frame  (bottom). 

After the Deimos phase, DePhine will perform thrusting maneuvers, to move from the near-Deimos 

circular orbit to an eccentric orbit, chosen to be in 2:1 resonance with the orbit of Phobos (pericenter of 

9,238 km and an apocenter of 20,510 km) (Figure 4).  We foresee approximately 45 Phobos flybys within 

a mission phase of 1 month (1.5 flybys per day) at moderate speeds of approximately 450 m/s 

(considerably less than the typical Mars Express Phobos flybys at speeds of approximately 3 km/s).  

At the beginning of this mission phase, we will begin with safe flyby distances to Phobos of ~500 km. 

Benefitting from the flyby tracking experience and improving Phobos ephemeris data that will be 

obtained, we will then reduce the distance until DePhine achieves flybys below 50 km with respect to the 

center of Phobos.  Small thrusting maneuvers near apocenter will allow us to change the flyby geometry, 

i.e., the intersection of the spacecraft trajectory with the so-called b-plane (the plane attached to the 

target, perpendicular to the spacecraft trajectory), which will allow us to carry out flybys over polar areas 

(typically more difficult to achieve from the QSOs). The closest approach will occur either slightly before 

or after S/C pericenter passage allowing us to realize different approach geometries (Figure 5).   

Remaining propellant permitting, flyby distances of 10 km, implying a small risk of collision, may be 

achieved at the end of the mission.  

4 Onboard Instruments 

The DePhine spacecraft shall carry seven instruments: a Shallow Subsurface Radar (SSR), a Wide Angle 

Survey Camera (WASC), a Deimos Magnetometer (DeMag), a Gama Ray and Neutron Spectrometer 

(GRNS), the Gravity Radio Science Investigation of the Martian Moons (GRIMM), theeXtra Small Analyzer 

of Neutrals – 2 (XSAN-2) and the Dust In the Martian EnviRonment (DIMER). 

4.1 Shallow Subsurface Radar – SSR 

The SSR transmits radar waves to the surface of the Martians moons and will analyze the reflected and 

refracted sounding waves, to obtain information about the surface and internal structure of Deimos and 

Phobos. The radar is a dual channel radar consisting of a High-Frequency Channel (HFC) covering a 

frequency range from 300 - 3000 MHz and a Low-Frequency Channel (LFC) operating at 60 MHz with 20 

MHz bandwidths. The design is optimized for DePhine’s operation with altitudes ranging from 30 to 1 km 

and low orbital speed.  

The High Frequency Channel will provide 2D radar images processing echoes from the surface and the 

first tenth of meters of the regolith in nominal mode. It will be able to detect layers, embedded rocks or 

possible water ice with depth depending decametric vertical resolution.  By multiple coverage we will 

achieve the vertical resolution needed to image embedded structures: for DePhine, we foresee 3D 

tomography with metric resolution, which will require approximately 40 observation passes and 

acquisition sequences with different observation geometries.  The reduction and correct 3D 

interpretation of the data will benefit from the high-resolution (a few meters or less) Digital Terrain 

Models (DTMs) of Deimos, delivered by the DePhine camera and associated photogrammetric image 

processing.  Altimeter modes at higher frequencies are implemented to provide target ranges for both 
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science and real-time navigation with a resolution of up to 6 cm. This information will contribute to 

shape model, surface roughness estimation, S/C orbit restitution, as well as to studies of Deimos’ and 

Phobos’ dynamical state.  

The Low Frequency Channel will enable probing of the first few hundred meters of Deimos and Phobos 

and will allow us to assess whether the observed geological structures have vertical extensions. LFC will 

be able to detect hidden blocks, boulders or voids, which would hint at a rubble pile interior, critical 

information for possible formation scenarios. 

The SSR consists of an electronic unit and an antenna system facing the surface. The electronic unit 

delivers a set of adjustable frequencies from 300 MHz to 800 MHz in HFC nominal mode and up to 3 GHz 

in the extended band. The fully polarimetric antenna system transmits a circular polarized signal and 

receives the returned signal in two perpendicular linear polarizations. Both signals are amplified, 

sampled, phase-calibrated and combined to co- and cross polarized signals in the two-channel receiver 

chain on board. The LF Channel is based on the bistatic Low-Frequency Radar (LFR), under development 

for the Asteroid Impact Mission (AIM) by ESA. It is a BPSK-coded radar operated at 60 MHz with a 10 to 

20 MHz bandwidth corresponding to the monostatic mode of LFR on the AIM orbiter. The antennas will 

be accommodated on the S/C instrument deck. The typical half-power beam width of more than 90° is 

limiting the pointing requirement to about +/- 10° or less.  

4.2  Wide Angle Survey Camera – WASC 

The Wide Angle Survey Camera (WASC) instrument uses a frame sensor array in combination with a wide 

angle lens for Deimos and Phobos imaging. The main science goal is the mapping of geological structure 

and diversity. The instrument will have a multispectral capability (including near-infrared) for 

compositional information.  The camera will also carry out astrometric observations and will contribute 

significantly to spacecraft optical navigation, in particular on flyby sequences.  

WASC will regularly take stereo sequences, which will be realized by overlapping nadir-pointed images, 

taken in close temporal succession, along the ground track of the spacecraft.  While we benefit from the 

large field of view of WASC (25°), this allows us a significantly reduced operational effort.  Image blocks 

will provide stereo information of equally high quality both along and perpendicular to the flight 

direction.  In combination with the high geometric stability of frame detectors, 3D point reconstruction 

from stereo analysis will be accurate to scales significantly smaller than the image resolution.   

The instrument is derived and re-uses main components from the NASA Dawn mission’s framing cameras 

(Dawn FC) (Sierks et al., 2011) (see sample image and camera laboratory model, Figure 6, Figure 7), 

which in turn is based on the design of the European Space Agency’s Rosetta Landing Imaging System 

(ROLIS) (Mottola et al., 2007).  A major modification for WASC is its increased field of view (larger by a 

factor of about 5 compared to Dawn FC). 
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Figure 6: Rim of Matronalia Rupes on Vesta, example image from the Dawn framing camera (Fig. 7)  
Source: Planetary Data System F1b_FC21A0015600_11361133030F1A.   

 

 

Figure 7: Dawn framing camera  

 

WASC will be equipped with a refractive optics modified from the ROLIS camera of Rosetta (Mottola et 

al., 2007). The optics will be color-corrected and make use of radiation-tolerant glasses. With an effective 

focal length of 30 mm, it will project a square field of view (FOV) of 25° by 25° onto the Charge Coupling 
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Device (CCD) detector. This translates to an image scale of 0.21 mrad per pixel.  Image ground pixel size 

will be better than 4 m/pixel, on average, for global mapping (from 10 km distance), and as high as 90 

cm/pixel on close flybys (2 km for close flybys of Deimos), gives a sampling of about 85 cm/pixel.  

The detector in WASC is a 1k x 1k CCD with frame-transfer architecture, which allows the 

implementation of electronic shuttering, avoiding a mechanical solution.   Color imaging will be realized 

by a filter wheel, which comprises an 8-position Geneva drive, a stepping motor, a Hall-effect angle 

encoder, and a wheel with 8 positions (specific filters yet to be determined).  WASC exploits a compact 

architectural design coupled with a framing detector, avoiding any scanning mechanism or operational 

requirement on the S/C to obtain images in different spectral bands and in stereo.  

4.3 Deimos Magnetometer – DeMag 

DeMag represents a suite of magnetometry instruments. The main component is a three-axial vector 

compensated fluxgate magnetometer with a Mascot design (Hercík et al. 2016; Fig. 8). The principle of 

fluxgate magnetometers is based on measuring the induced field of a soft magnetic core which is excited 

by a periodic saturating magnetic field. Like a transformer the core is surrounded by a primary and a 

secondary coil. The primary coil is used to excite the core, and a secondary one measures the response. 

A third set of coils is providing a negative feedback to keep the sensor in linear regime. The information 

about the ambient magnetic field is acquired from the combination of the response and the feedback 

signals. The technological details of the secondary magnetometers have to be defined.  

 

Figure 8: Fluxgate sensor MASCOT design (Hercík et al. 2016) 
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Figure 9: DeMag boom 

 

We foresee that two magnetic sensors are mounted on a deployable short (1 m) boom at the outer 

edges of the S/C structure for keeping interference level low and for enabling separation of s/c 

interferences by a dual sensor method (see Figure 9).   

 

4.4 Gamma Ray and Neutron Spectrometer – GRNS 

Planetary gamma-rays and neutrons are created within near-surface material when galactic cosmic rays 

(GCR) collide with an airless or nearly airless planetary body.  The GCRs liberate neutrons from elemental 

nuclei, which then generate gamma-rays via nuclear excitation reactions that are detected by sensors on 

orbiting (or landed) spacecraft.  Bulk concentrations of a number of elements (e.g., Fe, Si, O, Mg, H) can 

be measured using these GCR-induced gamma-rays.  In addition, the bulk concentration of some 

elements (e.g., K, Th, and U) can be measured using direct gamma-rays from their radioactive decay.  

Finally, GCR-induced planetary neutrons provide independent and complementary composition 

information through the three different energy ranges of thermal, epithermal, and fast neutrons.  

Thermal neutrons provide a measure of neutron absorbing elements (e.g., Fe and Ti), epithermal 

neutrons enable a determination of hydrogen concentrations and fast neutrons provide analysis of 

average atomic mass. 

  

Figure 10: CAD model cutaway view of the GRS sensor (from Goldsten et al., 2007). 

The Germanium (Ge) crystal is highlighted in red. It is 5 cm in diameter and 5 cm in length.  The intended view 
direction of the measurement is upward along the Ge detector centerline (same as the cut axis). 

 

The MESSENGER Gamma-Ray and Neutron Spectrometer

Fig. 4 CAD model cutaway

view of GRS sensor. The upper

left part of the passive radiator is

cut away to show instrument

internal parts. The Ge crystal,

highlighted in pink, is 5 cm in

diameter and 5 cm in length.

Intended view direction of the

planet is upward along the Ge

detector centerline (same as the

cut axis)

The cosmic-ray anticoincidence shield is formed by an annular cylinder of BC454-type

borated plastic scintillator (blue) around the cryostat and another thick disk of BC454 below

the cryostat. The scintillator blocks are wrapped in ultraviolet (UV) reflective materials and

are optically coupled together and to a photomultiplier tube (green) by pads (cyan) under

compression. BC454 consists of 5-weight-percent boron in polyvinyl toluene. The boron

preferentially absorbs neutrons that would otherwise be captured by hydrogen in the shield,

which would produce gamma-rays that could enter the Ge detector and give false indications

of hydrogen in the Mercury crust. The scintillator blocks are enclosed by an outer Mg hous-

ing and the PMT (with a 70-mm-diameter active surface) has an Al housing, which contains

a spring-loaded PMT mount with elastomeric potting to protect the PMT during launch.

The bottom part of the sensor outer housing is attached to the GRS deck by ten short Al

feet (some visible in Fig. 3). The photomultiplier housing protrudes down through a circular

hole in the deck (not shown in the figures).

As shown in Fig. 4 for the cooler cold finger, each of the penetrations into the Ge detector

cryostat has an O-ring vacuum seal. The outer cup is vented at the top (into the vacuum of

outer space in flight) and is designed to accept an O-ring-sealed top hat that screws into

the ring of holes visible in Fig. 4. The top hat has been fabricated with a side-on vacuum

hose connector. This pump hat is made of thin Al so as to minimally attenuate gamma-rays

of interest and allows full operation of the GRNS without a large vacuum chamber. Since

the detector parts can be assembled and disassembled nondestructively, this arrangement

was helpful in laboratory development of the GRNS and in spatial energy-efficiency ground

calibration at a nuclear reactor site. It also allowed full GRNS operation and testing after

mounting on the spacecraft to complete the comprehensive prelaunch checkout.
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The goals of the Gamma-Ray and Neutron Spectrometer (GRNS) are to measure the elemental 

concentrations of Fe, Si, O, Mg, K, H, as well as thermal, epithermal and fast neutrons.  The elemental 

concentrations are obtained with a relative statistical uncertainty of better than 20 %.  The neutron 

measurements enable the compositional characterization needed to distinguish between the various 

Phobos/Deimos formation scenarios.   

In order to make these measurements, GRNS needs to acquire data from Phobos and Deimos from a 

distance of less than one body radii for at least 20 hours per body.  For the neutron measurements, the 

data can be acquired using standard neutron sensors that have spaceflight heritage from the Lunar 

Prospector, Mars Odyssey, Dawn, and MESSENGER missions.   

The GRNS consists of four primary subsystems, namely a Gamma-Ray Spectrometer (GRS), a Neutron 

Spectrometer (NS), and two associated Data Processing Units (DPUs).  The GRS is based largely on the 

MESSENGER GRS (Figure 10) (Goldsten et al., 2007), which is a High-Purity Ge HPGe gamma-ray sensor, 

which warrants precision measurements with a high signal-to-background ratio.  The NS is based on the 

Lunar Prospector NS (Feldman et al., 2004) equipped with two 3He gas proportional counters that are 

used to measure thermal and epithermal neutrons.   

4.5 Gravity Radio Science Investigation of the Martian Moons – GRIMM 

The radio science experiment uses the radio link between the spacecraft and the ground station 

antennas on Earth for a precise mass and gravity field determination.  The experiment shall be supported 

by optical navigation. 

The attracting forces of the small moons and other non-gravitational forces act on the spacecraft and 

change its trajectory and speed, which can be precisely extracted from the Doppler shift of the radio 

carrier frequency received on ground (for details see: Andert et al., 2010; 2015; Pätzold et al., 2011; 

Pätzold et al., 2014a; 2014b;). The mass and gravity field of the body when combined with the body´s 

volume and shape determined from camera observation, pose constraints on the bulk density and hint 

at the internal structure and composition and porosity considerations, as demonstrated during the Mars 

Express flybys of Phobos (Andert et al., 2010; Pätzold et al., 2014a; 2014b) and the Rosetta flyby at 

asteroid 21 Lutetia (Pätzold et al., 2011).  

The Radio Science experiment GRIMM relies upon the on-board radio subsystem, which includes two 

redundant transponders providing a coherent two-way X-band uplink/X-band downlink (X/X) radio link, 

two redundant Travelling Wave Tube Amplifier (TWTA), which amplify the X-band downlink radio signal 

generated by the transponder, and the High Gain Antenna (HGA), which receives and transmits the radio 

signal.  A hydrogen maser in the ground station is used as the frequency standard for 

generation/acquisition of the uplink/downlink signal.  

The HGA shall be pointed towards the Earth during GRIMM gravity operations. The orbiter will not 

perform AOCS (Attitude and Orbit Control System) operations during GRIMM operation.  
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4.6 eXtra Small Analyzer of Neutrals - 2 – XSAN-2  

 

Figure 11: Cross section of the Analyzer of Neutrals (XSAN-2) and a sample trajectory of an Energetic 
Neutral Atom (ENA) to be detected. 

The eXtra Small Analyzer of Neutrals – 2 (XSAN-2) is a compact sensor for measuring neutrals (with 

energy >10 eV; energetic neutral atoms, or ENAs) or ions released from the regolith.  An entrance 

deflector can be switched on or off for rejection or detection of ions.  Neutrals (and ions for deflector off) 

passing the deflector hit the conversion surface and are transformed to positive ions. These are guided 

to an electrostatic analyzer (ESA), which provides the energy determination.  The ions enter a time-of-

flight section (TOF), which provides a rough mass identification within the accuracy determined by the 

energy conversion. The instrument sensor will be equipped with a cover to protect the instrument’s 

sensitive surfaces from contaminations during AIV (Assembly, Integration and Verification) and launch.  

The cover is opened when safe operations become possible.  

XSAN-2 (Figure 11) is a slightly modified replica in a series (Figure 12) of small ion and neutrals 

spectrometers built for Chandrayaan-1 (2008), Phobos-Grunt (2011), and it is going to fly on the 

BepiColombo mission (2018).  More detailed description is found in Wieser and Barabash (2016). 

 

Figure 12: Selected flight models of the XSAN-2 series 
from left to right: Phobos-Grunt/DIM, BepiColombo/MIPA, PRISMA/PRIMA (Wieser and Barabash, 2016). 
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Figure 13: Impact sensor block 

 

4.7 Dust In the Martian EnviRonment –  DIMER 

The DIMER experiment is devoted to detecting dust particles in the Mars environment, which have been 

suggested to form dust tori associated with the orbits of the Martian moons.  Besides, the experiment 

will address the question of the presence of electrostatic fields causing levitating and escaping of dust 

particles from the Martian moons.  The instrument includes two identical blocks of impact sensors (IS1 

and IS2) and 12 small sensors (10 g each) based on piezoceramic compounds mounted on the solar panel 

for registration of dust particles hitting the spacecraft (see Figure 13).  DIMER will be able to measure 

impact impulse, mass, velocity, and charge of the impacting particles.  The instrument is inherited from 

the Russian Lunar Dust Monitor (PmL), which will be a payload element on the Russian lunar landers 

scheduled for launch in 2019 and 2021. The PmL has passed all qualification tests (thermal, mechanical, 

electrical, functional, operation life time testing) and is now being manufactured. DIMER will use the 

sensor, electronics and mechanics developed for PmL 

5 Space Segment 

The scientific objectives of the DePhine mission can be fulfilled with a moderately complex space 

segment. The design has been confirmed with an internal phase 0 study, using the concurrent 

engineering design facilities at OHB System AG in Bremen, Germany. Subsystem trade-offs were 

considered and conservative assumptions were applied throughout the spacecraft design. At the time of 

writing, the performance of the Ariane 6 launcher is unknown. The mission has therefore been designed 

to be compliant with the known Soyuz launcher performance (i.e. uplift capability) from ESA’s launch site 

in Kourou. The environmental loads, fairing dimensions, launch adapter and launcher-spacecraft 

interfaces were taken from the draft issues of the Ariane 6.2 user manual (ArianeSpace, 2016). Heritage 

is taken from previous NASA and ESA missions (Mars Global Surveyor, Mars Express, Rosetta, 

BepiColombo), and well-characterized concepts under study (Phobos Sample Return, MMX, AIM).  
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Figure 14: Spacecraft in its launch and deployed configuration [OHB].  Note the steerable HGA and 
solar array panels. 

 

Figure 14 shows the spacecraft in its deployed and launch configuration, respectively. The spacecraft has 

a total dry and wet mass of about 585 kg and 1210 kg at launch, including all margins. The payload 

contribution is about 40 kg. The delta-v demand requires about 545 kg of propellant. The launch adapter 

mass is 80 kg. A launch mass margin of about 12 % (or more than 160 kg) as compared to the Soyuz 

performance makes the design robust towards any potential mass growth and towards uncertainties of 

the Ariane 6 class launcher. More detailed information on the spacecraft design is given in the M5 call 

science proposal (Oberst et al., 2016). 

The top deck of the spacecraft is the dedicated payload panel, which points towards the nadir direction 

with respect to Deimos and Phobos. The solar array and HGA are accommodated on opposite sides of 

the spacecraft. This maintains the center of mass and limits the (low) disturbance torques in the Mars 

environment. The solar array can be rotated for Sun tracking (1 degree of freedom). The HGA is 

equipped with a two axis pointing mechanism to enable independent Earth-pointing capabilities. 

Mounting the HGA on a boom increases the pointing envelope and flexibility. Two propellant tanks, the 

helium tank and reactions wheels are mounted externally. Each are clad with micro-meteorite protecting 

Multilayer Insulation (MLI).  

The spacecraft’s structure is based around a central tube, which establishes the primary load bearing 

path. Additional shear webs and panels create compartments for internal accommodations and external 

Launch configuration 

Deployed configuration 

Launch configuration 
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mounting. The propulsion subsystem uses a common approach with a mixed oxides of nitrogen (MON)/ 

Monomethylhydrazine (MMH) bipropellant chemical system. Large orbit maneuvers are performed with 

an apogee engine located at the bottom of the central tube. Two sets of small thrusters are used for 

attitude control and to perform small orbit maneuvers. Propellant is accommodated in three different 

tanks. A single MON tank is located in the central tube with two smaller MMH tanks mounted to its 

sides. Helium is stored in a smaller pressurized tank. The driving demand for the power subsystem occurs 

when the spacecraft is in its flyby mode. The payload and communication system (for the radio-science 

experiment) are operated simultaneous for several hours. The deployable solar array is mounted on a 

single wing, similar to Mars Global Surveyor. It provides sufficient power at a reduced mass. The battery 

is sized for launch and early operations, and the worst-case eclipse duration caused by Deimos in QSO.  

The Guidance, Navigation and Control (GNC) subsystem includes a standard suit of star trackers, Sun 

sensors, reaction wheels, an Inertial Measurement Unit (IMU) and a navigation camera. The GNC 

strategy is based on ground-in-the-loop guidance and navigation, with minimal on-board GNC autonomy. 

Delta-differential one-way ranging and offline landmark matching occurs before the spacecraft performs 

its injection maneuver into its flyby trajectory. Heritage is taken from previous missions (Mars Express, 

Rosetta) and possible future missions (Phobos Sample Return, AIM, PILOT project). The communication 

subsystem is based on an X-band system, with a steerable HGA. This steerable antenna will allow 

simultaneous radio tracking and observations by the platform instruments, which is technically not 

possible for the current Mars Express, with its antenna hard-mounted on the spacecraft bus.   

Data downlink, varying with Mars distance (Fig. 2), is realized via the 35m antennas of ESA’s ESTRACK. 

The data-handling subsystem implements a standard solution using an on-board computer, remote-

terminal units and a solid-state mass-memory unit. The mass memory is capable of covering four days of 

science and house-keeping data. A simple passive thermal control subsystem is used with a heater in a 

closed loop system.  

While the mission baseline described above was analyzed in much detail, the feasibility of alternative 

mission concepts was also assessed. The different alternative mission configurations are summarized in 

Table 1. 

Mass could be saved, for example, if the number of flyby events were reduced, or if the spacecraft 

entered a longer-period 3:1 Phobos resonance. The spacecraft could also first be injected into a GTO 

before its interplanetary transfer. Here, DePhine could be launched atop of Lisa-Pathfinder-derived 

propulsion stage (a jettison-able bi-propellant propulsion module) into GTO. This modified design, 

however, must be traded-off against increasing costs and complexity of the mission. This would avoid 

the redesign of the baseline structure and propulsion system to accommodate the increased delta-v. A 

dual-launch scenario on a co-manifested launcher might also be feasible.  

Table 1: Overview of Alternative Scenarios. 

Launcher  Scenario  Launch mass, kg  Margin, kg  Margin, %  

Soyuz-FG 

Baseline  1129  162  12%  
3:1 resonance  1119  172  13%  
Only 5 Deimos flybys  1113  178  13%  
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ELECTRA UHF addition  1151  140  10%  

Ariane 6-2 

DePhine-A  1450  TBD  TBD Soyuz+12%  

GTO  1713  3287  66%  
GTO with propulsion stage  2531  2469  49%  

 

Benefitting from the increased launcher performance of the Ariane 6.2, the nominal mission baseline can 

be upgraded (“DePhine-A”), resulting in a greater science return.  For example, the spacecraft may go 

into a Phobos QSO after the resonant elliptical orbit. Entering the QSO requires the spacecraft to adjust 

its orbital parameters to match those of Phobos, at a significant cost of delta-v.  In addition, an upgrade 

would allow the deployment of a small lander on Deimos. However, the added lander including 

deployment mechanisms and navigation capability, will add considerably to the launch mass of the 

spacecraft (Table 1).  In fact, in these configurations, the total launch mass increases by 16 % w.r.t the 

baseline, and exceeds the Soyuz capability by 5 %. The option would become feasible if the performance 

of the Ariane 6.2 increased moderately.  
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