Imaging the Solar corona

D. Berghmans - SIDC
Royal Observatory of Belgium

Abstract

As the solar corona is one of the prime research topics of the SIDC, we will further explore where Matt West left the subject in his basic seminar of 2017 Nov 22. Except at times of solar eclipses, the solar corona is not (or hardly) visible without specialised telescopes on space platforms. We will focus on instrumental aspects of two types of telescopes in which "Belgium" is playing a pioneering role: EUV imagers and coronagraphs. Both type of instruments show the same solar corona, yet the images look different in many ways. Why is that?

Despite decades of analysis and modelling, crucial insight is missing in the gap between the capabilities of both instruments. At a few million km from the solar surface, the magnetic structuring of the corona looses its dominance over the gas pressure, and the typical corona topology fades into the solar wind. Exactly this crucial region is where both EUV imagers and coronagraphs up till now have delivered poor data and where some of the remaining big solar questions are waiting to be addressed: How daes the structuring and dynamics of the corona drive the solar wind? From which part on the Sun is the solar wind at Earth originating?

The talk will close with an outlook on the two main developments of SIDC currently in the space-shipyards: the ASPIICS coronagraph on PROBA-3 and the EUI telescopes onboard Solar Orbiter. Thanks to unprecedented mission concepts, both instruments are expected to bring us 'closer' to understanding the solar corona than ever before.

Overview

1. The solar corona: what is it and why do we care?
2. Coronagraphs
3. EUV imagers
4. The gap. What are we missing?
5. Closer to the sumthan ever before:

- ASPIICS on PROBA-3
- EUI on Solar Orbiter

6. Conclusions

The solar corona what is it and why do we care?

© 2017 Williams College
Composite by Christian Lockwood
© 2017 Williams College
Composite by Christian Lockwood

© 2017 Williams College
Composite by Christian Lockwood

$$
P=P_{0} e^{\left(-\frac{2}{H}\right)}
$$

$$
H=\frac{k T}{M g}
$$

$$
\begin{gathered}
g=270 \mathrm{~m} / \mathrm{s}^{\wedge} 2 \\
\mathrm{M}=1 \\
\mathrm{~T}=5700
\end{gathered}
$$

$\mathrm{H}=270 \mathrm{~km}$
© 2017 Williams College
Composite by Christian Lockwood

$$
P=P_{0} e^{\left(-\frac{2}{H}\right)}
$$

$$
H=\frac{k T}{M g}
$$

$\mathrm{g}=270 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
 M=1
 $T=5700$
 >1 million C

H=270km

© 2017 Williams College
Composite by Christian Lockwood

Eclipse 1999, Hungary

Eclipse 1999, Hungary

Bengt Edlen: Fe XIV

The corona is big \& hot

So what?

The corona is big \& hot

So what?

Studying the hot solar corona helps to understand

- other star's atmosphere
- atomic physics, plasma physics and perhaps nuclear fusion
- the influence of solar activity on the Earth

Coronagraphs. Why is imaging the corona hard?

Coronagraphs

Coronagraphs

Coronagraphs

Earth atmosphere

Coronagraphs

Earth atmosphere

Coronagraphs

Earth atmosphere

Coronagraphs

Earth atmosphere

Coronagraphs

SMM/C/P
April 1980

LASCO C2 (red) and C3 (blue) coroneraphs onboard SOHO

http://swhv.oma.be

EUV imagers

What does the corona look like under the occultor?

The beginning of the space age

SOLAR X-RAY PHOTOGRAPH NRL, APRIL 19, 1960

Pinhole camera

SOLAR X-RAY PHOTOGRAPH NRL, APRIL 19,1960

Pinhole camera

SOLAR X-RAY PHOTOGRAPH NRL, APRIL 19,1960

Pinhole camera

Friedman (I963) IAUS, I6, 45

April 201960 Sunspot drawing from Royal observatory of Belgium

April 201960 Sunspot drawing from Royal observatory of Belgium Richard Nuttinck, André Koeckelenbergh

Focussing X-rays is hard

Focussing X-rays is hard

XMM mirrors during tests at Centre Spatial de Liege

http://history.nasa.gov/SP-402/ch I.htm

1990s: EUV lithography develops normal incidence EUV optics

"EUV light at 13.5 nanometers can etch features as small as 100 nanometers across,"

Molybdenum:
heavy scatter element that absorbs EUV strongly
Silicon:
light element that absorbs EUV only weakly

1990s: EUV lithography develops normal incidence EUV optics

1990's: prototypes on sounding rockets

Molybdenum:
heavy scatter element that absorbs EUV strongly
Silicon:
light element that absorbs EUV only weakly

EIT
Extreme ultraviolet Imaging Telescope

PI: JP Delaboudinière

 +2016 June

11 layers

Mo: 36.2 Å
Si: $54.3 \AA$

"EIT waves"

SWAP onboard PROBA2

What are we missing?

EUV imagers

coronagraphs

Surprisingly long lived structures in the gap

The gap is where physics happens

(after Fox et al. 2016)

A typical simulated solar wind acceleration profile shows that the solar wind becomes supersonic around 2-3 R_{\odot} from the center of the Sun.

Filling the gap: ASPIICS on PROBA-3

ASPIICS onboard PROBA=3

- The ultimate coronagraph: artificial total eclipse created using two spacecraft in flight formation.
- A technological challenge: the distance between the spacecraft is about 150 m , and the accuracy of their positioning should be around a few mm!

Andrei Zhukov

Principal Investigator of PROBA-3/ASPIICS

Precise formation flying

PRECISE FORMATION FLYING

- The relative lateral and longitudinal positions are controlled
- The absolute attitude is controlled
- The «line of sight» of the formation is controlled
- A virtual large and solid structure is built and oriented

MANEUVERS FOR FUTURE ASTRONOMY

 MISSIONS:- Formation re-size
- Formation re-targeting
- Combination of Station keeping, Re-size and re-targeting

PROBA-3/ASPIICS in comparison with other coronagraphs

PROBA-3 will examine the crucial part of the solar corona that have never been studied in such detail.

```
SDO: below \(1.27 \mathrm{R}_{\circ}\)
SOHO/LASCO C2: above 2.2 R○
ASPIICS: 1.08-3.0 Rc
```


Filling the gap EUI on Solar Orbiter

Solar Orbiter

- will reach $<0.3 \mathrm{AU}$
- will reach >30 deg latitude
- reduced relative rotation
- mission 2018-2028
- 10 instruments, in-situ \&remote sensing

Extreme Ultraviolet Imagers (EUI)

PI: P. Rochus

Equatorial

South
Earth

North

Solar Plane

[6әр] әрпи!

$$
0^{\circ}
$$

FSI: Full Sun Imager

FOV: $3.8^{\circ} \times 3.8^{\circ}$, @ 0.28 AU: 4 Rsun x 4 Rsun

17nm

resolution: 9 arcsec on 2 pixels @ 0.28 AU $=1830 \mathrm{~km}$ on 2 pixels

FSI: Full Sun Imager

FOV: $3.8^{\circ} \times 3.8^{\circ}$, @ 0.28 AU: 4 Rsun x 4 Rsun

17nm

resolution: 9 arcsec on 2 pixels
@ 0.28 AU $=1830 \mathrm{~km}$ on 2 pixels

HRI:High Resolution Imagers

field of view:

$$
\begin{aligned}
& 17^{\prime} \times 17^{\prime} \\
& \text { @ } 0.28 \mathrm{AU}=(0.16 \mathrm{R})^{\wedge} 2
\end{aligned}
$$

resolution:
1 arcsec on 2 pixels
@ $0.28 \mathrm{AU}=200 \mathrm{~km}$

Airbus UK

Conclusions

- the corona is big, hot \& interesting
- to see the corona, you must get rid of solar visible light
- coronagraphs see the outer corona, EUV imagers see the inner corona
- the gap in between is where space weather originates
- the ASPIICS coronagraph on PROBA-3 and the EUI .telescopes on Solar Orbiter will close the gap

Thanks: BELSPO/PRODEX for financing our instruments, CSL \& partners for building them, colleagues at ROB for getting all the work done, A. Zhukov for providing ASPIICS slides.

