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Ground-based GNSS Zenith Total Delay (ZTD) observations have been assimilated into
the Met Office numerical weather prediction (NWP) models since 2007, and into the Met
Office UKV model since its introduction in 2009. The UKV model is a 1.5 km resolution
convective-scale model and uses a 3D-Var assimilation system. There is a plan to upgrade the
UKV assimilation system from 3D-Var to 4D-Var in the near future, giving the opportunity
to increase the temporal resolution of ZTDs assimilated. The ZTD observation-error
covariances used operationally are assumed to be uncorrelated in both space and time
despite the expectation that ZTDs have temporally and spatially correlated observation
errors due to the production method (e.g. batch processing using a sliding window and
(time) relative constraints). To assess whether these error correlations should be accounted
for in order to use ZTDs at higher temporal resolution, a posteriori diagnostics to estimate
the extent of temporal and spatial error correlations in ZTD observations over the UK,
BENELUX and Northern France are used.

Over two separate month-long periods, we find that ZTD observations within the same
processing batch are correlated, and that correlations persist between different batches to at
least 1 h. Spatially, ZTD observations are found to be correlated to a minimum of 62.5 km.
We find that the extent of the diagnosed correlation between observations separated in
space and time is affected by the value of the relative constraints parameter chosen by the
processing centre in the GNSS processing software. The impact of the relative constraints
parameter on the diagnosed error variances is greater than that revealed by innovation
statistics alone.
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1. Introduction

The potential of using signals from Global Navigation Satellite
System (GNSS) satellites for meteorology was recognised by
Bevis et al. (1992) over 20 years ago. The equivalent extra path
travelled by a GNSS satellite signal when passing from the satellite
to a ground-based receiver through the neutral atmosphere is
expressed as the total path delay in the zenith direction above
the receiver, known as the Zenith Total Delay (ZTD). Each
ZTD observation is comprised of slant path delays to several
satellites within an observed epoch, which are mapped to the
zenith direction by mapping functions, e.g. Niell Mapping
Functions (NMFs; Niell, 1996), Global Mapping Functions
(Boehm et al., 2006a), Vienna Mapping Functions (Boehm et al.,
2006b).

Thanks to the Economic Interest Grouping (EIG) EUMETNET
GNSS Water Vapour Programme (E-GVAP; http://egvap.dmi.

dk; accessed 4 July 2017), ZTD observations are available on the
Global Telecommunication System (GTS) in near-real time from
networks of GNSS receivers across Europe, but also world-wide.
These ZTDs are produced by national geodetic, cartographic
and meteorological institutes using a range of software, e.g. the
Bernese GNSS Software 5.0 (Dach et al., 2007) or GAMIT (Herring
et al., 2009). National networks of GNSS receivers are generally
processed solely by their national institutes due to restrictions
on the dissemination of raw GNSS data. The national processing
centres also include GNSS sites from freely available networks,
such as data from the European Permanent Network (EPN; http://
epncb.oma.be, accessed 4 July 2017; Bruyninx et al., 2012) or from
the International GNSS Service (IGS; http://igscb.jpl.nasa.gov/,
accessed 4 July 2017) network to give broader coverage than their
national network.

As with any observation, various sources of uncertainty
are associated with ZTD measurements. In addition to the
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instrumental errors introduced during the sending and receiving
of GNSS signals, systematic errors can also be introduced during
the processing stage. For example, mapping functions (e.g. the
NMF from Niell, 1996) are used to convert several observations
along slant angles to a composite observation in the zenith
direction. Mapping functions have tended to assume that the
atmosphere is horizontally stratified which is not always the case.
This assumption will be more valid in some instances than others,
and its validity is likely to vary seasonally which could lead to
different levels of error correlations at different times of year.
Mapping functions which use NWP model outputs to produce
coefficients for mapping to the zenith have been developed (e.g.
the Vienna Mapping Functions detailed in Boehm et al., 2008)
and may provide ZTDs which are a more accurate representation
of the surrounding atmosphere.

GNSS raw observations are processed over a given observing
period to produce a set of ZTD values within that period. Process-
ing GNSS raw data requires a number of input parameters and
models (e.g. for the orbit trajectories of the GNSS satellites), which
may contain errors that are specific to that period. Some of these
errors can impact the processing of the GNSS raw data recorded
in the whole network, hence potentially introducing a systematic
error to the ZTDs estimated in all stations for that period, leading
to a correlation of ZTD errors within the given period.

A systematic error introduced to the GNSS processing is likely
to have the effect of creating errors that are correlated with
one another, either temporally or spatially. When assimilating
observations for NWP, the errors associated with the observations
are specified, and the covariance of errors between pairs of
observations should be accounted for where possible. These errors
and their covariances affect the weights given to the observation.
If the weighting is too low or too high then assimilation of the
observations will be suboptimal.

Within the least-squares adjustment used to calculate ZTDs,
relative constraints are placed on the estimated ZTD values.
Relative constraints are parameters that constrain the time
evolution of the ZTDs. Wielgosz et al. (2011) tested four
processing strategies in which they used two reference ZTD
points calculated using the Saastamoinen model (Saastamoinen,
1972), and used this model to also calculate the ZTD for a small
network of receivers with baselines of 1–3.2 km. They varied the
relative constraints between 0.1 and 100.0 mm. Applying relative
constraints of 0.1 mm resulted in ZTD differences of less than
3 mm between the network receivers during the test periods,
whereas with relative constraints of 100.0 mm the ZTDs varied
by as much as 42 mm. The degree to which the ZTD should
vary in such cases depends on the atmospheric conditions. Rohm
et al. (2014) studied the rate of change of ZTD for a selection
of GNSS receivers in the Melbourne region in Australia during
‘normal’ and ‘storm’ conditions. During storm conditions they
found that the average rate of change of ZTD was 40 mm h−1

compared to 20 mm h−1 in normal conditions. They concluded
that the relative constraints during stormy conditions should be
increased by a factor of 2. This would enable the measured ZTD
to better represent the fluctuations in the atmosphere. During
normal stable conditions, noise in the measured ZTD could be
kept to a minimum.

Following a preliminary study by Higgins (2001), Bennitt
and Jupp (2012) reported on the earliest assimilation trials at
the Met Office, using the North Atlantic and European (NAE)
numerical weather prediction (NWP) model with both 3D and 4D
variational assimilation (3D-Var and 4D-Var). The NAE and UK4
model cited by Bennitt and Jupp (2012) are now obsolete, and the
Met Office now focuses its assimilation resources on the global
and 1.5 km horizontal resolution UK model, called the UKV.
Bennitt and Jupp (2012) used an 8 mm observation error for all
observations in their four trial periods when assimilating into the
NAE model at both 24 and 12 km horizontal resolution. When
assimilating with 4D-Var, the ZTD observations were thinned
to one observation per hour in the 6 h assimilation window of

the NAE, with each observation chosen to be closest to the full
hour. Using this thinning approach, little impact was found when
assimilating ZTDs with 4D-Var compared to 3D-Var in the NAE.
It was noted that better diagnostics for choosing the observation
error and an improved thinning strategy for ZTDs could be
beneficial to the Met Office. Due to a constant process of refining
and improving both NWP models and assimilation processes, the
considerations for assimilation of ZTDs have changed since the
earlier study of Bennitt and Jupp (2012).

Macpherson et al. (2008) chose to apply the temporal
observation error model of Jarvinen et al. (1999) for their ZTD
assimilation experiments using the Environment Canada (EC)
regional NWP model at 15 km horizontal resolution. A 6 h time
window was used in the EC regional model, with a series of
nine observations from each site. The temporal error correlation
model used by Macpherson et al. (2008) was based on the findings
of Stoew and Elgered (2005), who estimated the temporal error
correlation of ZTDs based on the errors in the position of the
GNSS receivers as calculated by the software used to produce
the ZTD. Using these position errors, temporal correlations were
found out to 1–2 days, which Macpherson et al. (2008) suggested
was due to satellite orbit geometry. Acknowledging the work of
Eresmaa and Jarvinen (2005), who found correlation in ZTD
errors out to 100–200 km, Macpherson et al. (2008) chose a
spatial thinning distance of 100 km. ZTDs were found to give
a positive impact on precipitation forecasts in most cases when
assimilating with 4D-Var in the EC NWP models.

Poli et al. (2007) assessed the impact of assimilating ZTDs
using 4D-Var into the T358 (approximately 23 km resolution
over France) resolution global Arpège NWP model. Using a 6 h
assimilation window with seven time slots, Poli et al. (2007)
assimilated the average ZTD value from the observations within
each time slot. Observations were thinned to a horizontal distance
of 50 km, and the observation error for each of three trials was
varied from 4.5 to 10 mm according to the season, based on
studying the innovation statistics. Poli et al. (2007) found a
positive impact on forecasting the synoptic circulation when
assimilating ZTDs, and a positive impact on precipitation in
spring and summer. Based on these trials, Poli et al. (2007)
attempted to diagnose the background and observation errors,
using the technique of Desroziers et al. (2005). Taking statistics
from eight assimilation cycles from each of their three trial
periods, observation error estimates of between 5 and 7 mm
were found. Using the method of Andersson et al. (2000), they
diagnosed the background error for ZTD in the Arpège model
to be approximately 10 mm in winter and 25 mm for summer
in Europe. Consequently, Poli et al. (2007) chose to set ZTD
observation errors of 10 and 20 mm for the winter and summer
respectively in their operational assimilation, in order to preserve
the ratio of the background and observation errors in each season
at 1.0 for winter and 0.8 for summer.

Observation-error statistics can be estimated using a posteriori
diagnostics such as those proposed by Desroziers et al. (2005)
and Hollingsworth and Lönnberg (1986). Such diagnostics have
previously been used to estimate the error characteristics of hyper-
spectral infrared sounders such as IASI and AIRS (Garand et al.,
2007; Stewart, 2009; Bormann et al., 2010; Stewart et al., 2013;
Weston et al., 2014), microwave sounders such as AMSU-A and
MHS (Bormann and Bauer, 2010) and microwave imagers such
as SSM/I and AMSR-E (Bormann et al., 2011).∗ The same method
can be used on any type of observation which is assimilated. Here
we apply the method to ZTD observations specifically.

The characteristics of observation errors which can be
diagnosed include the error standard deviations as well as
spatial (both vertical and horizontal), inter-channel and temporal

∗IASI = Infrared Atmospheric Sounding Instrument; AIRS = Atmospheric
Infrared Sounder; AMSU-A = Advanced Microwave Sounding Unit; MHS =
Microwave Humidity Sounder; SSM/I = Special Sensor Microwave/Imager;
AMSR-E = Advanced Microwave Scanning Radiometer.
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Figure 1. Domain of the UKV model area (white area) showing distribution of GNSS receiver sites for processing centres (a) METO (+), METR (×) and SGN (◦)
and (b) ROB1-4.

error correlations. For example, if observation pairs are binned
by horizontal separation and observation error estimates are
produced for each bin, then spatial observation error correlations
can be diagnosed as explained and illustrated in Bormann and
Bauer (2010). In a similar way, vertical or inter-channel error
correlations can be diagnosed by binning observations by vertical
level or channel number as in Bormann and Bauer (2010);
Bormann et al. (2010, 2011); Garand et al. (2007); Stewart (2009);
Stewart et al. (2013); Weston et al. (2014). The method can
also be extended to diagnose temporal error correlations by
binning observation pairs by temporal separation and calculating
observation error estimates for each bin.

The Met Office plans to move from 3D-Var assimilation
towards using 4D-Var assimilation for the UKV model (Tang
et al., 2013), so it is especially important that we understand the
temporal error correlations between observations. In this article
we diagnose and study the statistics of ZTD observation errors,
including temporal and spatial error correlations as well as the
error standard deviations within the Met Office UKV model
across the whole assimilation window.

In section 2 of this paper we describe the methods used to
diagnose the observation errors and their correlations. Section 3
describes the results of the experiments we have run to diagnose
the ZTD error correlations, with discussion of these results and
their implications in section 4. In section 5 we summarize our
conclusions from these results.

2. Theory and methods

2.1. Experimental set-up

The Met Office UKV model is a variable-resolution NWP model
based on the dynamics described by Davies et al. (2005). The
UKV model domain is shown in Figure 1; it has a resolution of
1.5 km over mainland UK stretching to 4 km resolution near the
edges of the domain, and in total there are 744 × 928 gridpoints
and 70 vertical levels with a model top at approximately 40 km.
ZTD observations are assimilated operationally into this model
with an analysis grid at a resolution of 3 km using 3D-Var. Other
observations assimilated into this model are AMDAR reports
from aircraft, radiosonde profiles, surface SYNOP, scatterometer
winds, atmospheric motion vectors, clear-sky radiances from
SEVIRI, Doppler radial winds, GeoCloud (Renshaw and Francis,
2011), MHS and surface-based cloud observations.†

The assimilation is run every 3 h, with an analysis at 0000, 0300,
0600, 0900, 1200, 1500, 1800 and 2100 UTC. A 3 h time window is
used, centred on the analysis times listed above. In this study, we
assimilate all ZTD observations within the time window. We ran
the assimilation cycles for a summer and a winter period: 19 May

†AMDAR = Aircraft Meteorological Data Relay; SEVIRI = Spinning Enhanced
Visible and Infrared Imager.
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Table 1. Temporal separations for ZTD observations from METO, ROB and SGN relative to the first hourly batch of observations, within a 3 h assimilation window.

Obs. time (min) HH = 1 HH = 2 HH = 3

0 15 30 45 59 0 15 30 45 59 0 15 30 45 59

0 0 15 30 45 59 60 75 90 105 119 120 135 150 165 179
15 15 0 15 30 44 45 60 75 90 104 105 120 135 150 164
30 30 15 0 15 29 30 45 60 75 89 90 105 120 135 144
45 45 30 15 0 14 15 30 45 60 74 75 90 105 120 134
59 59 44 29 14 0 1 16 31 46 60 61 75 90 105 119

Table 2. Temporal separations for ZTD observations from METR relative to the
first 15 min batch of observations, within a 3 h assimilation window.

Obs. time 0 14 15 29 30 44 45 59
(min)

HH = 1
0 0 14 15 29 30 44 45 59
14 14 0 1 15 16 30 31 45

HH = 2
0 60 74 75 89 90 104 105 119
14 46 60 61 75 76 90 91 105

HH = 3
0 120 134 135 149 150 164 165 179
14 106 120 121 135 136 150 151 165

2013 to 18 June 2013 and 1 December 2013 to 31 December 2013.
Model background fields were available at analysis time (T+0),
and each of the 2 h either side of the analysis time (T−2, T−1,
T+1, T+2). Background ZTD values at intermediate times to these
fields are therefore interpolated from the nearest hourly fields.

From 19 May to 18 June 2013, the UK experienced a mixture
of weather regimes, with some periods of fairly stable weather
and high pressure, and some periods influenced by low pressure
systems. The month of December 2013 was windier than average
over the UK, with a series of low pressure systems influencing the
weather, bringing heavy rain and flooding.

For each of the two monthly periods studied, we ran the
assimilation system a number of times, selecting a different
ZTD processing centre each time. These processing centres
are METO (the Met Office hourly processed Europe-wide
ZTD observations), SGN (the French National Institute of
Geographic and Forest Information hourly processed ZTD
observations), METR (the Met Office 15 min processed UK-
wide ZTD observations) and ROB (Royal Observatory Belgium).
An overview of the different methods commonly used in ZTD
processing can be found in Guerova et al. (2016). The processing
centres provide ZTD observations at locations as seen in Figure 1.
These processing centres all used the Bernese GNSS Software
v5.0 (Dach et al., 2007) and IGS ultra-rapid orbit products.
METO, ROB and SGN provide ZTD observations in hourly
batches, using a double-difference processing method, and a
sliding window approach for the normal equation (NEQ) files
from previous hours’ processing, but providing ZTD values only
from the last hour for data assimilation. ROB uses 3 h of NEQs
plus the current hour, METO uses 4 h worth of NEQ files plus
the current hour, whereas SGN use 6 h of NEQs plus the current
hour. The ZTD observations for the hour HH are provided at
HH00, HH15, HH30, HH45 and HH59 min. Within the 3 h
assimilation window, this gives the temporal separations as given
in Table 1. METR provides observations in 15 min batches, using
16–20 15 min NEQ files from the previous 4 h. Within the hour
HH, METR ZTD observations are provided at HH00, HH14,
HH15, HH29, HH30, HH44, HH45 and HH59 min which gives
the temporal separations as given in Table 2. ROB provided ZTD
observations in four different datasets for the December 2013
period, denoted as ROB1, ROB2, ROB3, and ROB4, which used
relative constraints of 1.0, 2.0, 4.0, and 7.0 mm respectively. SGN,
METO and METR all use relative constraints of 1.0 mm.

2.2. ZTD observation pre-processing

ZTD observations were passed through the standard quality
control procedures which are used for operational assimilation.
Firstly, GNSS sites where the difference in height between the
surface and the model surface is greater than 300 m are rejected.
When the observation site lies too far above or below the
model surface, the observation operator does not give a good
representation of the humidity near the surface, which can lead
to problems in the assimilation process. Secondly, in order to
avoid assimilating spurious observations, ZTDs are rejected when
the absolute innovation (observation minus background) value is
greater than 55 mm (five times the maximum standard deviation
found in long-term monitoring of the innovations (Bennitt and
Jupp, 2012).

A bias correction is applied to the ZTD observations based
on their specific processing centre and site identification code.
Bias correction values are computed from the mean innovation
over 28 days, which should be sufficient to account for any bias
in measurement or forward model error, but not be heavily
influenced by synoptic model bias (Bennitt and Jupp, 2012). The
bias correction values are updated when significant changes in
the model occur, or to take into account seasonal or long-term
drift. If the available bias correction value is calculated from less
than 7 days of innovation data, the observations from the site are
rejected. In that case, the data sample is not considered sufficient
to capture the true bias.

For these experiments, no temporal or spatial thinning of ZTD
observations was applied, as we wished to capture the innovations
and residuals from all ZTD observations from the chosen GNSS
site and chosen processing centre. ZTD observations comprised
approximately 3% of the total observations assimilated in each
cycle. In each experiment, observations from only one processing
centre were chosen. The observations are assigned an observation
error of 6 mm, which is the value currently used for operational
assimilation in the UKV model. This observation error value was
prescribed following previous testing of different error values
between 3 and 12 mm.

2.3. Data assimilation

An NWP model requires initial conditions as a starting point
for any forecast run. As the current state of the atmosphere
is unknown, a best estimate of this true state is produced
using data assimilation. Millions of observations are combined
with a previous short-range model forecast (known as the
background) to produce an analysis at model resolution. This
process is performed by minimizing a cost function of the
form

J(x) = 1

2

(
x − xb

)T
B−1

(
x − xb

)

+ 1

2

n∑
i=1

{
yi−HiMi(x)

}T
Ri

−1
{

yi−HiMi(x)
}

, (1)

where x is the model state vector, xb is the background state
vector produced from a previous short-range forecast, yi is the
vector of observations valid at time i, B is the background-error
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Table 3. Diagnosed observation-error standard deviations (mm) for the summer and winter periods, and the mean (standard deviation) innovation for the period,
for each processing centre.

19 May–18 June 2013 December 2013

Diagnosed obs error σ Mean (σ ) innovations Diagnosed obs error σ Mean (σ ) innovations

METO 5.29 0.95 (8.62) 6.09 −0.78 ( 9.18)
METR 5.30 4.58 (8.78) 6.41 −1.95 ( 9.96)
SGN 5.45 1.16 (8.74) 5.57 −2.38 ( 9.39)
ROB1 – – 6.08 2.09 (10.47)
ROB2 – – 7.16 2.05 (10.39)
ROB3 – – 7.57 2.19 (10.47)
ROB4 – – 8.08 2.29 (10.81)

covariance matrix, Ri is the observation-error covariance matrix
valid at time i, Hi is the observation operator valid at time i and
Mi is the forecast model which propagates the model state from
time 0 to i. The observation- and background-error covariance
matrices provide information on how much weight should be
given to each source of information.

The diagonal elements of the R matrix in Eq. (1) contain error
variances for each observation and the off-diagonal elements
contain the error covariances between every pair of observations.
To simplify the processing, current data assimilation schemes
assume that observation errors from different observation types
are uncorrelated with one another, which means that this matrix
is assumed to be block diagonal, with each block corresponding
to a different observation type.

In the Met Office data assimilation system, inter-channel error
correlations in IASI, AIRS and Cross-track Infrared Sounder
(CrIS) observations are accounted for as detailed by Weston et al.
(2014). The errors for all other observation types are assumed
to be uncorrelated so that each block of the main R matrix is
diagonal and all off-diagonal elements are set to zero. This means
that all other forms of error correlation, including spatial and
temporal correlations, are assumed to be zero.

Spatial and temporal error correlations are known to exist in
some observation types such as atmospheric motion vectors,
which are wind observations derived by feature tracking in
satellite images (Bormann et al., 2003). However, rather than
being accounted for directly, the data are thinned so that no two
observations with a spatial or temporal separation of less than
200 km or 2 h can be assimilated, and the observation errors are
inflated.

2.4. Estimation of observation errors

To estimate the observation-error standard deviations and
temporal and spatial correlations, the diagnostic procedure
introduced by Desroziers et al. (2005) is used here. In addition to
this method, there are other methods of estimating observation
errors such as that proposed by Hollingsworth and Lönnberg
(1986), which Eresmaa and Jarvinen (2005) adapted in their study
for estimating the spatial error covariance of ZTDs. Eresmaa and
Jarvinen (2005) used a combination of the errors at analysis time
of Integrated Water Vapour from radiosondes, surface pressure
from SYNOP stations, and the ZTD from GNSS to compute a
spatial error covariance model for ZTDs using Hollingsworth
and Lönnberg (1986)’s method. However, this method attempts
to split an estimate which contains contributions from both
the background and observation errors by assuming that, whilst
the background errors are spatially correlated, the observation
errors are not. Our study aims to diagnose both temporal
and spatial observation error correlations, therefore violating
the spatial correlation assumption, hence Hollingsworth and
Lönnberg (1986)’s method is not applicable. For this reason
the diagnostic method proposed by Desroziers et al. (2005) is
the only method used to estimate observation errors in this
article.

The chosen method uses observation minus background
(innovation) and observation minus analysis (residual) statistics
to produce observation-error variances and covariances. The
basic formula for calculating these diagnostics is

R = E

[{
y − H

(
xa

)} {
y − H

(
xb

)}T
]

, (2)

where the notation is as in section 2.3, E is the expectation, and
the analysis, xa, is defined as the model state for which the cost
function value in Eq. (1) is minimized.

There are two key assumptions made in the derivation of
Eq. (2). The first is a standard data assimilation assumption
that the observation and background errors are uncorrelated.
The second assumption is that the assumed R and B matrices
used to produce the analysis are consistent with the true error
covariance matrices. If either of these assumptions are violated
then the diagnostic can produce some unrealistic results such
as correlation values of greater than 1.0. Additionally it has
been shown by Desroziers et al. (2009) that, to obtain accurate
estimates from this diagnostic, the observations and background
errors must have significantly different scales.

In our case, we are attempting to diagnose non-zero temporal
and spatial observation error correlations which are assumed to
be zero within the assimilation scheme. This is a direct violation
of the second assumption above. This means that any results from
this diagnostic should be interpreted with caution. The length-
scales of the humidity background errors in the UKV model
vary from ∼5 to 30 km, whereas the length-scales of the ZTD
observation errors have been found to be significantly longer
at 100–200 km in the previous study by Eresmaa and Jarvinen
(2005). This means that a lack of scale separation should not have
an impact on the results.

To estimate the observation-error standard deviations, the
square root of Eq. (2) is used with the innovation and residual
values coming from the same observations as shown by

σ =
√√√√ 1

n

n∑
i=1

{
yi − Hi (xa)

} {
yi − Hi

(
xb

)}
, (3)

where Hi is the observation operator which takes the model
state to the observation equivalent at the same location and
time as yi, and n is the number of observations in the
sample.

To estimate the error covariances, Eq. (2) is used with innova-
tion and residual values coming from different observations with
a certain temporal or spatial separation as shown by

cov = 1∑n
i=1 mi

n∑
i=1

mi∑
j=1

{
yi−Hi

(
xa

)}{
yj−Hj

(
xb

)}
, (4)

where mi is the number of observations which are at a certain
spatial or temporal separation from yi. This formula is then used
for many different bins of separation distances and times to
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calculate the error covariances for all separations. To calculate the
non-dimensional correlation value, the covariances are divided
by the variance (or covariance at zero separation).

In each case, for both temporal and spatial error correlations,
we wish to isolate one type of correlation from the other. When
calculating temporal error correlations, only observation pairs
at the same location are used to remove the effect of spatial
error correlations on the data. When calculating spatial error
correlations, only observation pairs which have a maximum
temporal separation of 15 min are used. This is a compromise
between choosing the smallest time separation to avoid unwanted
effects from temporal correlations whilst maintaining a large
enough sample size for each separation bin to give statistically
significant results. For larger temporal separation thresholds,
the diagnosed spatial correlations will be dampened by the
effect of weaker temporal correlations at larger separations.
Conversely, using larger temporal separations may introduce
spurious correlations due to water vapour features advecting
between different sites and the same feature being detected in two
different sites at two different times.

In order to convey the statistical significance of the correlations,
we calculated the 95% confidence intervals. The confidence
intervals are calculated by taking the standard deviation of the
diagnosed correlation values and dividing by the square root of
the sample size for the corresponding separation bin. In statistics
it is generally agreed that correlation values of below 0.2 are
negligible.

3. Results of diagnostics

3.1. Innovation analysis

The mean innovations for December 2013 vary from −2.38 mm
(SGN) to 2.29 mm (ROB4) with an average standard deviation
across the seven observation datasets of 10.10 mm (Table 3
and Figure 2). The mean innovations for the May–June period
have a larger range than the December period (0.95–4.58 mm)
with an average standard deviation of 8.71 mm (Table 3 and
Figure 2). Figure 2 shows that the different mean innovations
for each processing centre correspond to systematic shifts in
the distribution of innovations. The mean innovations for ROB
increase slightly as the value of the relative constraints increase
(i.e. the strength of the time constraints decrease), with ROB1
having the lowest mean innovations of 2.09 mm, and ROB4 having
the highest of 2.29 mm. There is also a corresponding increase in
standard deviation from 10.47 mm (ROB1) to 10.81 mm (ROB4).

The diagnosed observation error standard deviations for
METO, METR and SGN for December 2013 are 6.09, 6.41, and
5.57 mm respectively (Table 3). For the May–June period, the
diagnosed observation-error standard deviations have a smaller
range than in the December 2013 period, ranging from 5.29 mm
(METO) to 5.45 mm (SGN) (Table 3). For ROB, the diagnosed
observation-error standard deviations increase from 6.08 to
8.08 mm with increasing relative constraints.

3.2. Temporal correlations

During the May–June period, METO and SGN observation errors
are correlated up to 60 min for all time intervals. All observations
within the same batch (14, 15, 29, 44, and 59 min) have correlated
errors with decreasing correlations with time (Figures 3 and 4). For
observations from METR, those within the same processing batch
(14 min time interval) have the most correlated errors (Figure 5).
METR observation errors had no significant correlation after
61 min in this period.

In the December period, the observation errors from METO
exhibit similar behaviour to the May–June period (Figures 6 and
3). ZTD observations from SGN have significant correlation in
their errors at time intervals out to more than 180 min in the
December period and only a minority of time intervals have
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Figure 2. Relative frequency of ZTD innovations (observation minus back-
ground) for processing centres METO, SGN, ROB, and METR for (a) 19 May–18
June 2013 and (b, c) 1–31 December 2013. The dashed line shows zero innovation,
and the vertical lines indicate the mean values.

insignificant correlations (Figure 7). Adjacent hourly batches
(intervals of 1, 16, 31, 46, and 60 min) from SGN have higher error
correlation values than adjacent observation batches from METO
(Figures 7 and 6). Observations from METR show significant
correlation until 76 min (Figure 8) compared to 61 min in the
May–June period, but the 14 min correlation remains the highest
in both periods (disregarding 0 min correlations). In Figures 3, 4,
6, 7, 9 and 10, the error correlation value for 14 min separations
is greater than 1.0, which is not a valid value for correlation.

ZTD’s from ROB1 are correlated until at least 180 min
(Figure 9). ZTD observations from the same batch decorrelate
faster than those from different batches. As the value of the
relative constraints parameter is increased (i.e. the time evolution
constraints are relaxed), from 1.0 mm for ROB1, to 7.0 mm
for ROB4, the ZTD observations become decorrelated more
quickly (Figures 9–12), such that for ROB4 the observations are
decorrelated by 59 min. The correlation of ZTDs within the same
batch decreases by a smaller amount as the value of the relative
constraints increases.

3.3. Spatial correlations

Spatial observation-error correlations were calculated for
separation distances at 12.5 km intervals. Correlation is found to
drop below 0.2 at separation distances of a minimum of 62.5 km
(SGN, May–Jun 2013, Figure 13(a) and Table 4). The longest
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(a)

(b)

Figure 3. (a) Mean correlation of observations with time for ZTD observations
processed by METO for 19 May–18 June 2013 at 1 min intervals, with 95%
confidence intervals, and (b) the number of observation pairs used in the
calculation.

separation distance after which error correlation is found to drop
off in Figure 13 is 275 km (ROB1, December 2013, Table 4). Spatial
correlations in December 2013 persist for greater separation
distances for METO, METR, and SGN than for May–Jun 2013
(Figure 13(a) and Table 4).

The effect on spatial correlation of increasing the relative
constraints can be seen in Figure 13(b). The spatial correlation
reduces quickly up to 37.5 km for all values of relative constraints.
For both ROB3 and ROB4 (relative constraints of 4.0 and 7.0 mm
respectively) the correlation drops below 0.2 at 125 km separation
distance. For ROB1 and ROB2 (relative constraints of 1.0 and
2.0 mm), the spatial correlation is still evident until separation
distances of 275 and 250 km respectively (Figure 13(b) and
Table 4).

4. Discussion

Innovation statistics are often used at NWP centres when
assigning a suitable observation error for use in assimilation,
and we consider the standard deviation of the innovations as
an indicator of the observation-error standard deviation. In the
studies presented here, the innovation standard deviation values
would suggest that a ZTD observation error of 8–10 mm would be
suitable for use in the UKV model. Here we diagnose the average
value of the observation-error standard deviation across both
periods studied for METO, SGN and METR to be 5.69 mm. This
suggests that the value of 6 mm currently used in the UKV model
is suitable for both periods. The innovation statistics for those
two periods suggest that the current rejection limit of 55 mm is
too high for the UKV model. To reject observations which have
innovations outside of the expected normal distribution, then a

(a)

(b)

Figure 4. As Figure 3, but from processing by SGN.

rejection limit of five times the innovation standard deviation
should be set at a minimum of 40 mm.

The innovation statistics for the ROB observations by
themselves indicate that, as the relative constraints increase,
there is not a clear mandate to increase the observation error
for assimilation. However, using this technique we have shown
that the diagnosed observation error increases by up to 2 mm
as the relative constraints are increased from 1.0 to 7.0 mm. We
therefore caution that innovation statistics alone may not be
enough to truly advise on what the assigned observation error
should be. Whilst the inflation of observation-error values such
as that described by Poli et al. (2007) may be sufficient, it may
benefit the assimilation system to consider error correlations
more carefully when inflating the assigned error.

The mean innovations vary between the two seasons studied,
and are also specific to a processing centre and their processing
strategy. The difference in the mean innovations between seasons
may be explained by the difference in model background bias
between the two periods. However, we see in December 2013
that, even when processing comparable networks of receivers, the
mean innovations can be quite different. The exact source of these
differences is difficult to track down, due to the number of possible
differences in processing strategy and is not within the scope of this
study. However it is an important consideration when designing
a bias-correction strategy in an assimilation system. Separating
the observation bias arising from the processing strategy from
the shifting nature of any model background bias is a focus of
ongoing work at the Met Office, to inform the best strategy for
bias correcting ZTD observations.

The difference in temporal error correlations between the
two periods studied may be due to differences in the humidity
characteristics of the periods. December 2013 was dominated by
synoptic-scale weather patterns, which may be more likely to
persist over an area for a longer period of time. During May–June

c© 2017 Crown Copyright.
Quarterly Journal of the Royal Meteorological Society c© 2017 Royal Meteorological Society

Q. J. R. Meteorol. Soc. 143: 2436–2447 (2017)



ZTD Error Correlations 2443

1.0

(a)

(b)

Same batch

Different batches

0.8

0.6

0.4C
or

re
la

tio
n

0.2

0.0

5

N
um

be
r 

of
 

ob
se

rv
at

io
ns

 u
se

d
(×

10
0 

00
0)

4

3

2

1

0
0 60 120

Temporal separation of observations (min)
180

Figure 5. As Figure 3, but from processing by METR.

2013, the weather was much more varied, and so ZTD fluctuations
at a site may vary more rapidly. Depending on the ability of the
model to represent these temporal fluctuations, it may be less
likely in the May–June case that the innovations and residuals
are correlated due to rapidly evolving humidity features. The
slightly greater spatial error correlation found in December 2013
also supports this, and is in agreement with the work of Rohm
et al. (2014). The different geographical area covered by SGN
compared to the other processing centres, or the longer sliding
window used in the ZTD processing, may have contributed to
higher temporal error correlations in December 2013.

The temporal error correlations found here suggest that if the
UKV model were to be upgraded to a 4D-Var assimilation system
using the same time window and background field frequency as at
present (currently T−120, T−60, T+0, T+60, T+120 min), then
for METO we could assimilate observations at hourly frequencies
without the need to allow for temporal error correlations. For a
different temporal frequency of background fields, a reanalysis of
the correlations would be useful.

Figures 3–8 show that for METO, METR and SGN, there
is more correlation between observations within the same
processing batch than between those in different batches. Whilst
this is likely to be due to the nature of the way the ZTD
observations are processed, it is possible that this is an artefact of
the linear interpolation of hourly model values to times within
the hour. Since correlations for METR, which processes in 15 min
batches, persist to at least 61 min, this seems plausible. This higher
correlation should be borne in mind when assimilating ZTD
observations at a temporal frequency higher than 1 h. It would
also be interesting to investigate this with higher-frequency model
fields where model ZTD values will be more independent. In the
case of ROB, we can see that increasing the relative constraints
has a greater effect on observations in different batches. For

(a)

(b)

Figure 6. As Figure 3, but for 1–31 December 2013.

ROB1, which uses the same relative constraints as METO, METR
and SGN, ZTDs in the same batch decorrelate more quickly,
yet overall, observations in different batches are more highly
correlated. This suggests there are further parameters involved in
the processing which affect the correlation.

In Figures 3, 4, 6, 7, 9 and 10 the diagnosed error correlation
value for the 14 min time separation goes above 1.0. A correlation
above 1.0 is impossible and there are a number of factors
contributing to such values being diagnosed here. Firstly, and
most importantly, the diagnostic procedure used makes several
assumptions which have to be true to obtain accurate results,
as introduced in section 2.4. One such assumption is that the
assumed observation- and background-error covariance matrices
used in the assimilation system must be equal to the true error
covariance matrices. As we do not know what the true matrices
are, and consequently the assumed matrices are estimated using a
range of techniques, this assumption is almost certainly violated to
some extent in the Met Office UKV assimilation system. Secondly,
the correlation values are calculated by dividing the covariance
values by the variance (or covariance at zero separation) and
there will be uncertainty in both of these estimates, so that the
uncertainty in the correlation value will be compounded.

When using a diagnostic technique such as the one chosen
here, the results must be interpreted with a level of caution due
to these uncertainties, but they do give some useful insight into
error values and correlations. By comparing such results with
those from alternative diagnostic techniques, the reliability of the
diagnosed values can be assessed qualitatively, as was done by
Bormann and Bauer (2010) and Bormann et al. (2010, 2011).
This will be the subject of a future study.

The drop-off in spatial error correlations which occurs between
62.5 and 105 km in Figure 13(a) might be explained by the spatial
scale of a ZTD observation. One ZTD observation is produced
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(a)

(b)

Figure 7. As Figure 4, but for 1–31 December 2013.

(a)

(b)

Figure 8. As Figure 5, but for 1–31 December 2013.

(a)

(b)

Figure 9. As Figure 3, but from processing by ROB1 for 1–31 December 2013.

(a)

(b)

Figure 10. As Figure 9, but from processing by ROB2.

c© 2017 Crown Copyright.
Quarterly Journal of the Royal Meteorological Society c© 2017 Royal Meteorological Society

Q. J. R. Meteorol. Soc. 143: 2436–2447 (2017)



ZTD Error Correlations 2445

(a)

(b)

Figure 11. As Figure 9, but from processing by ROB3.

using the signal path delay from many GNSS satellites to the
receiver within a given observation epoch. These signal path
delays are converted to a ZTD using a mapping function. The
ZTD processing system will exclude signals received from satellites
at less than 10◦ elevation, due to multipath effects occurring
below this angle. Therefore, we consider a ZTD observation as
an observation of a cone of atmosphere above the receiver. The
dominant variant in the ZTD is the delay due to water vapour
in the troposphere. Since the majority of water vapour resides in
the lower half of the troposphere, if we consider the top of this
cone to be at 5 km altitude, the radius of the observed cone of
atmosphere is approximately 55 km. The actual observed radius
varies depending on the satellite constellation geometry visible
from each receiver during an observation epoch. It therefore
seems plausible that this cone of observation reflects in the spatial
correlation of the observed ZTD value: at the lowest separation
distances, the cones from adjacent receivers overlap, giving rise to
correlation in the ZTDs from each site, which is captured by the
innovations and residuals. This effect is likely to differ depending
on the meteorological conditions. During more stable conditions,
the observed atmosphere is more likely to be consistent with the
atmosphere represented in the mapping function. By using more
realistic meteorological information in the mapping functions,
this correlation effect may be reduced, but relying on a priori
meteorological information in order to produce an observation
to be used in an assimilation system brings its own issues.

While the ZTD represents a whole-column measurement, it
can be considered as having two parts: the hydrostatic delay,
and the wet delay. The hydrostatic delay is closely related to the
surface pressure field, and so when studying error correlations
on a limited area, where pressure may be quite uniform, we
could expect that there is some error correlation arising from
the hydrostatic delay. By studying a global set of observations,

(a)

(b)

Figure 12. As Figure 9, but from processing by ROB4.

this effect may not be present. To isolate these effects, one could
separate the hydrostatic delay and wet delay from the ZTD and
study the error correlations of both.

Whilst the geometry of the ZTD observing system could explain
the spatial correlation drop-off, it is clear that the processing
parameters also have an effect. The influence of the relative
constraints in the ROB observations on the spatial correlation
is evident. By constraining the ZTD processing less, as in ROB3
and ROB4, we may be converging on what may be the true
spatial correlation due to the observing geometry. ROB1 and
ROB2 appear to be constrained by some other parameters which
are restricting the variability as compared to METO, METR and
SGN. Due to the resource constraints of the ZTD processing
centres, a thorough study to pinpoint the sources of these
additional correlations has not been possible, but is recommended
if possible in the future. As we move towards increasingly higher-
resolution NWP models, with higher variability, the ability
of the ZTD observations to represent atmospheric variability
becomes increasingly important. Allowing the ZTDs to capture
this variability at the expense of some increase in noise, but
reduction in correlation, could be beneficial.

There are relatively few GNSS receivers which are located at less
than 100 km separation in the networks studied here (Figure 1).
The spatial correlation scales found in this study, which are
slightly shorter than the lowest correlation lengths found by
Eresmaa and Jarvinen (2005), could be accounted for by applying
spatial thinning to 100 km across the domain. Denser networks
of GNSS receivers exist in other parts of Europe, for example in
Belgium and the Netherlands, and so spatial error correlations
would need to be diagnosed and accounted for if ZTDs were
assimilated from these networks. Diagnosis of these spatial error
correlations using a similar method and the Met Office global
NWP model is planned in the near future.
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(a) (b)

Figure 13. Spatial correlation of ZTD observations for 19 May–18 June 2013 and 1–31 December 2013 at 12.5 km spatial separation intervals as processed by (a)
METO, METR and SGN and (b) ROB1–4.

Table 4. Maximum distance (km) for which significant (> 0.2) spatial correlation
has been found for ZTDs for the four processing centres METO, METR, SGN and

ROB.

19 May–18 June 2013 December 2013

METO 75 100
METR 87.5 112.5
SGN 62.5 100
ROB1 – 275
ROB2 – 250
ROB3 – 125
ROB4 – 125

At spatial scales greater than these distances, there is no significant correlation
(i.e. < 0.2).

5. Conclusions

Based on the diagnostics produced in this study, we have found
spatial error correlations for ZTD observations with separations
up to 100 km for METO and SGN processing centres, and up to
275 km for the ROB processing centre. This correlation length is
consistent with the premise that a ZTD observation is produced
from observations of the slant path delay of the signal from a
GNSS satellite to a ground-based receiver over a given epoch,
and that the geometry of these slant paths represent a cone of
sky above the receiver with varying radius. Correlation exists at
greater length-scales, depending on the processing settings used
when producing the ZTD observations.

We have found temporal correlations in the errors of ZTD
observations from the same location in the UKV model which
persist to at least 1 h. The batch processing method of ZTD
observations, the use of the double-difference method, NEQ
stacking and which processing settings are used are likely to
account for some of this correlation. The temporal frequency
of model background fields also appears to be a contributing
factor. Observations from within the same batch should not
be assimilated in a 4D-Var assimilation without accounting for
the error correlations. We find that the 6 mm observation error
currently used for assimilation of ZTD observations in the UKV
model using 3D-Var is appropriate. We recommend not relying
on innovation statistics alone to help assign observation errors,
and when considering the optimum spatial and temporal thinning
of ZTD observations.

Due to the influence of model grid spacing on a model’s ability
to represent temporal and spatial meteorological features, we plan
to run similar diagnostic experiments for ZTDs assimilated in the

Met Office global NWP model. Since the Met Office global model
runs operationally at 17 km horizontal resolution and has a 6 h
assimilation window with background fields every 3 h, we expect
quite different results from those presented here. Ideally, we
would like to see further study on the effect of the ZTD processing
on the error correlations, in order to find the optimum balance of
noise, correlation, and representivity in the ZTD observations. A
comparison of the double difference approach and precise point
positioning would also be useful to determine the effect on the
spatial and temporal correlations. Such studies would help to
optimize the use of ZTD in high-resolution NWP.
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