000002299 001__ 2299
000002299 005__ 20160706141823.0
000002299 0247_ $$2DOI$$a10.1051/0004-6361/200913147
000002299 037__ $$aASTROimport-456
000002299 100__ $$aLadjal, D.
000002299 245__ $$a870 µm observations of evolved stars with LABOCA
000002299 260__ $$c2010
000002299 520__ $$aContext. During their evolution, asymptotic giant branch (AGB) stars experience a high mass loss which leads to the formation of a circumstellar envelope (CSE) of dust and gas. The mass loss process is the most important phenomenon during this evolutionary stage. In order to understand it, it is important to study the physical parameters of the CSE. The emission of the CSE in the (sub)millimetre range is dominated by the dust continuum. This means that (sub)millimetre observations are a key tool in tracing the dust and improving our knowledge of the mass loss process.  Aims: The aim of this study is to use new submillimetre observations of a sample of evolved stars to constrain the CSE physical parameters.  Methods: We used aperture photometry to determine the fluxes at 870 µm and to investigate the extended emission observed with the new APEX bolometer LABoCa. We computed the spectral energy distribution (SEDs) with the 1D radiative transfer code DUSTY, which we compared to literature data. Grain properties were calculated with both the spherical grains distribution and the continuous distribution of ellipsoids (CDE), and a comparison between the two is drawn. Synthetic surface brightness maps were derived from the modelling and were compared to the LABoCa brightness maps.  Results: A sample of nine evolved stars with different chemistry was observed with LABoCa. We detected extended emission around four stars. Physical parameters of the circumstellar envelope were derived from SED modelling, like the dust chemical composition, the dust condensation temperature and the total mass of the envelope. It proved to be difficult to fit the SED and the intensity profile simultaneously however. The use of the CDE leads to “broad” SEDs when compared to spherical grains, and this results in steep density distributions (proptor-2.2 typically). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 079.F-9305A and 081.F-9320A.Reduced data is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A53
000002299 700__ $$aJusttanont, K.
000002299 700__ $$aGroenewegen, M. A. T.
000002299 700__ $$aBlommaert, J. A. D. L.
000002299 700__ $$aWaelkens, C.
000002299 700__ $$aBarlow, M. J.
000002299 773__ $$cA53$$pAstronomy and Astrophysics$$v513$$y2010
000002299 85642 $$ahttp://esoads.eso.org/abs/2010A%26A...513A..53L
000002299 905__ $$apublished in
000002299 980__ $$aREFERD