000002270 001__ 2270
000002270 005__ 20160701171702.0
000002270 037__ $$aASTROimport-427
000002270 100__ $$aLobel, A.
000002270 245__ $$a3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D
000002270 260__ $$c2011
000002270 520__ $$aWe develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV λ1395. We develop parameterized input models for Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that the modulations are produced by a regular pattern of radial density enhancements that protrude almost linearly into the equatorial wind. We find that the modulations are caused by narrow `spoke-like' wind regions. We  present a hydrodynamic model showing that the linearly shaped radial wind pattern can be caused by mechanical wave action at the base of the stellar wind from the blue supergiant. 
000002270 700__ $$a Toalá, J. A.
000002270 700__ $$a Blomme, R.
000002270 773__ $$c42-47$$pBulletin de la Societe Royale des Sciences de Liege$$v80$$y2011
000002270 85642 $$ahttp://esoads.eso.org/abs/2011BSRSL..80...42L
000002270 905__ $$apublished in
000002270 980__ $$aREFERD