000002201 001__ 2201
000002201 005__ 20160701171701.0
000002201 0247_ $$2DOI$$a10.1111/j.1365-2966.2012.21933.x
000002201 037__ $$aASTROimport-358
000002201 100__ $$aBriquet, M.
000002201 245__ $$aMultisite spectroscopic seismic study of the ß Cep star V2052 Ophiuchi: inhibition of mixing by its magnetic field
000002201 260__ $$c2012
000002201 520__ $$aWe used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic β Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f1 = 7.148 46 d-1) and by rotational modulation (Prot = 3.638 833 d). Two non-radial low-amplitude modes (f2 = 7.756 03 d-1 and f3 = 6.823 08 d-1) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign and known in the literature. Using the photometric constraints on the degrees ℓ of the pulsation modes, we show that both f2 and f3 are prograde modes with (ℓ, m) = (4, 2) or (4, 3). These results allowed us to deduce ranges for the mass (M ∈ [8.2, 9.6] M⊙) and central hydrogen abundance (Xc ∈ [0.25, 0.32]) of V2052 Oph, to identify the radial orders n1 = 1, n2 = -3 and n3 = -2, and to derive an equatorial rotation velocity veq ∈ [71, 75] km s-1. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (αov ∈ [0, 0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic β Cep star θ Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior. 
000002201 700__ $$a Neiner, C.
000002201 700__ $$a Aerts, C.
000002201 700__ $$a Morel, T.
000002201 700__ $$a Mathis, S.
000002201 700__ $$a Reese, D. R.
000002201 700__ $$a Lehmann, H.
000002201 700__ $$a Costero, R.
000002201 700__ $$a Echevarria, J.
000002201 700__ $$a Handler, G.
000002201 700__ $$a Kambe, E.
000002201 700__ $$a Hirata, R.
000002201 700__ $$a Masuda, S.
000002201 700__ $$a Wright, D.
000002201 700__ $$a Yang, S.
000002201 700__ $$a Pintado, O.
000002201 700__ $$a Mkrtichian, D.
000002201 700__ $$a Lee, B. C.
000002201 700__ $$a Han, I.
000002201 700__ $$a Bruch, A.
000002201 700__ $$a De Cat, P.
000002201 700__ $$a Uytterhoeven, K.
000002201 700__ $$a Lefever, K.
000002201 700__ $$a Vanautgaerden, J.
000002201 700__ $$a de Batz, B.
000002201 700__ $$a Frémat, Y.
000002201 700__ $$a Henrichs, H.
000002201 700__ $$a Geers, V. C.
000002201 700__ $$a Martayan, C.
000002201 700__ $$a Hubert, A. M.
000002201 700__ $$a Thizy, O.
000002201 700__ $$a Tijani, A.
000002201 773__ $$c483-493$$i1$$pMonthly Notices of the Royal Astronomical Society$$v427$$y2012
000002201 85642 $$ahttp://esoads.eso.org/abs/2012MNRAS.427..483B
000002201 905__ $$apublished in
000002201 980__ $$aREFERD