000002178 001__ 2178
000002178 005__ 20160706145452.0
000002178 0247_ $$2DOI$$a10.1051/0004-6361/201220978
000002178 037__ $$aASTROimport-335
000002178 100__ $$aTkachenko, A.
000002178 245__ $$aDetection of a large sample of γ Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy
000002178 260__ $$c2013
000002178 520__ $$aContext. The launches of the MOST, CoRoT, and Kepler missions opened up a new era in asteroseismology, the study of stellar interiors via interpretation of pulsation patterns observed at the surfaces of large groups of stars. These space missions deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars.  Aims: Our ultimate goal is a detection and analysis of an extended sample of γ Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. This kind of diagnostic can be used to deduce the internal rotation law and to estimate the amount of rotational mixing in the near core regions.  Methods: We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus (γ Dor) candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. The spectroscopic data are analysed to determine the fundamental parameters like Teff, log g, vsini, and [M/H].  Results: We find that all stars for which spectroscopic estimates of Teff and log g are available fall into the region of the HR diagram, where the γ Dor and δ Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature; log g measurements suggest luminosity class IV-V, i.e. sub-giant or main-sequence stars. From the Kepler photometry, we identify 45 γ Dor-type pulsators, 14 γ Dor/δ Sct hybrids, and 10 stars, which are classified as "possibly γ Dor/δ Sct hybrid pulsators". We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes.  Conclusions: We have shown that our photometric classification based on the light curve morphology and colour information is very robust. The results of spectroscopic classification perfectly agree with the photometric classification. We show that the detected correlation between vsini and frequencies has nothing to do with rotational modulation of the stars but is related to their stellar pulsations. Our sample and frequency determinations offer a good starting point for seismic modelling of slow to moderately rotating γ Dor stars. Based on data gathered with NASA Discovery mission Kepler and spectra obtained with the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.Tables A.1 and B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A52
000002178 700__ $$aAerts, C.
000002178 700__ $$aYakushechkin, A.
000002178 700__ $$aDebosscher, J.
000002178 700__ $$aDegroote, P.
000002178 700__ $$aBloemen, S.
000002178 700__ $$aPápics, P. I.
000002178 700__ $$ade Vries, B. L.
000002178 700__ $$aLombaert, R.
000002178 700__ $$aHrudkova, M.
000002178 700__ $$aFrémat, Y.
000002178 700__ $$aRaskin, G.
000002178 700__ $$aVan Winckel, H.
000002178 773__ $$cA52$$pAstronomy and Astrophysics$$v556$$y2013
000002178 85642 $$ahttp://esoads.eso.org/abs/2013A%26A...556A..52T
000002178 905__ $$apublished in
000002178 980__ $$aREFERD