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ABSTRACT

We have developed software that autonomously de-
tects CMEs in image sequences from LASCO. The
crux of the software is the detection of CMEs as
bright ridges in [height, time] maps using the Hough
transform. The output is a list of events, similar
to the classic catalogs, with principle angle, angu-
lar width and velocity estimation for each CME.
In contrast to catalogs assembled by human opera-
tors, these CME detections by software can be faster,
which is especially important in the context of space
weather, and possibly also more objective, as the de-
tection criterion is written explicitly in a program.
In this paper we describe the software and validate
its performance by comparing its output with the
visually assembled CME catalogs. We discuss its
present success rate (about 75%) and prospects for
improvement. Finally, we show that the software can
also reveal CMEs that have been not been listed in
the catalogs. Such unreported cases might be of in-
fluence on CME statistics and prove that also the
present catalogs do not have a 100% success rate.
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1. INTRODUCTION

Over the past 6 years, coronal mass ejections
(CMEs) have been detected routinely by visu-
ally checking each image from the Large Angle
Spectrometric Coronagraph (LASCO, Brueck-
ner et al. (1995)) on-board SOHO (Domingo
et al., 1995). Event catalogs have been assem-
bled continuously and are made publicly available
(http://lasco-www.nrl.navy.mil/cmelist.html, but
also http://cdaw.gsfc.nasa.gov/CME list). Each
observed CME is listed with its time of appearance,
the angle of its central axis, its angular span,
velocity and acceleration estimates and a short
morphological description. These catalogs are used
as a reference and form a valuable resource for
further statistical analysis on the nature of CMEs
(St. Cyr et al., 2000).

The visual detection of CMEs in the flood of incom-
ing new data is a labor intensive task. It is up till
now essentially the human eye that detects a CME
occurrence and a scientist that collects all the CME
parameters in the catalogs. With the future coro-
nagraphs on the 2 STEREO spacecraft or on the
SDO mission this will become a big investment of
man power. Meanwhile near real time alerts for halo
CMEs are needed by the space weather community.
Although halo CMEs take a few days to arrive to
the Earth, their detection is timely as CPU-time in-
tensive 3D MHD simulation are required to estimate
their geoeffectiveness. This implies that CME halo
alerts should be issued 24 hours per day.

Moreover, the subjective interpretation by a human
operator or scientist makes it doubtful whether this
visual CME detection is stable over a solar cycle,
as the operator gains experience or personnel is re-
placed. There is probably not much confusion for
big, well structured events but small and/or weak
events might be arbitrarily detected or not.

For all these reasons, we have developed a software
package that detects CMEs in coronagraphic images.
In this paper we will present the inner machinery
of this package. A first preprocessing module (sec-
tion 2) merges the C2 and C3 images, cleans, rebins
and reformats them with every step optimized for
improving the CME contrast. The second image-
recognition module (section 3) then extracts motion
patterns and groups the patterns in CMEs. In sec-
tion 4, we estimate the performance of the package
and in section 5 we list our main conclusions.

2. THE PREPROCESSING MODULE

The default processing of the LASCO images (see eg
latest images on http://sohowww.nascom.nasa.gov)
is not optimized for CME detection. The CME signa-
ture is convolved with quasi-static K-corona streamer
structures and with slowly moving stars, planets and
comets as well as the instrumental stray light and F-
corona backgrounds. Also, towards the edge of the
field-of-view (FOV), the CME contrast diminishes,
which makes it difficult to follow outmoving features.
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Figure 1. Example of a [time,height] slice through the datacube (top) and the ridges detected in it with the Hough
transform (bottom). The inclination angle of the ridges corresponds to the propagation velocity. The horizontal
range corresponds to the month May 1998. The vertical range corresponds to the combined C2/C3 field of view.

The images are relatively large with a spatial resolu-
tion far beyond what is needed for CME detection.
A typical CME is only a relatively weak variation
in intensity and only visible in a few subsequent im-
ages. All this means that the ’CME signal’ is only
very scarcely present in the huge amount of incoming
data. Straight application of image recognition tech-
niques on the usual 1024x1024 images would there-
fore result in a giant computational overhead. Fi-
nally, the different spatial and temporal resolution
of C2 and C3 data make a combined analysis dif-
ficult. To avoid all these complications, a prepro-
cessing module is applied that reformats the input
images:

• Each level 0.5 image from LASCO/C2 and C3 is
read in. Exposure time normalization is applied
and bright point like sources (cosmic ray hits,
but also planets and stars) are removed.

• A polar transformation is applied: the [x, y]
FOV becomes a [r, θ] FOV (Figure 5), with θ the
poloidal angle around the Sun and r the distance
from the limb. By choosing the r-range appro-
priately, the dark occulter and corners are eas-
ily avoided. While transforming we rebin, from
1024x1024 pixels for the [x, y] FOV to a 200x360
pixels [r, θ] FOV. This enhances the signal to
noise ratio significantly, especially far from the
disc, as the size r∆θ∆r of the ’footprint’ of a
[r, θ] pixel in [x, y] images grows as r.

• The [r, θ] images originating from C2 and C3 are
combined in a single composite image by rescal-
ing/matching the different spatial and temporal
resolution of the two coronagraphs. Since the
LASCO C2 FOV is much smaller than that of
C3, this step essentially comes down to adding
a thin C2 strip at the bottom of the [r, θ] C3
images. To take into account the different ob-
servation times of the C2 and C3 images, a cubic
spline interpolation is applied so that C2 images
are matched to the default 1 hour cadence of C3.

• Stacking the composite [r, θ] images in a [r, θ, t]
datacube, we derive a background as a running

average over 1 day. For each [r, θ] pixel, a CME
passage results in a short lived, positive devi-
ation from the running average. In an iter-
ative procedure, such deviations are identified
and removed for the next iteration of the back-
ground calculation. After a few iterations, the
resulting background contains only the variabil-
ity on timescales larger than 1 day. In what fol-
lows, we consider relative deviations from the
original [r, θ, t] datacube with respect to this
background. This effectively removes the dust
corona but also streamers that rotate in and out
of the FOV.

The output of all this is a [r, θ, t] datacube which
is much smaller than the total of the original input
data, and in which most of the non-CME signal is
removed or strongly attenuated.

3. THE IMAGE RECOGNITION MODULE

CMEs are seen as bright features moving outward
from the Sun. It turned out not to be feasible to iden-
tify in each separate image the location of individual
CMEs by segmentation techniques. The CMEs are
too variable in appearance, they are often too weak
to identify their extension (especially their trailing
edge), and they easily get merged with one another.

Instead of trying to detect CMEs in each [r, θ] im-
age, we looked at [t, r] slices (Figure 1, top) for each
θ in the [r, θ, t] datacube. If a [t, r] slice cuts through
a CME, an inclined ridge is seen in the [t, r] slice.
Detecting CMEs in [t, r] slice was first introduced by
Sheeley et al. (1999). Thanks to the preprocessing
module however, our [t, r] slices, have a much better
contrast and contain less noise. Working with [t, r]
slice has the advantage that all CMEs look the same
(inclined ridges) and that even weak CMEs show up
with a clear signature. Finally, as a bonus, the prop-
agation speed of the CME can be determined from
the inclination angle of the CME.
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Figure 2. Comparison of the catalog CMEs (dark)
and those found by the software (white). Time runs
vertically over most of May, 1998. The poloidal angle
runs counterclockwise from left (near C3 pylon) to
right. The catalog time of appearance corresponds to
the bottom of the dark boxes. The ’thickness’ of the
boxes is arbitrarily set to 8 hours.

A well known technique for detecting ridges is the
so-called Hough transform (Jähne, 1997). We make
an Hough transformation of every [t, r] slice. In
transformed space, we select the most significant
signals, which after inversion correspond to the re-
quired ridges (Figure 1, bottom). Each ridge R in
a [t, r] slice at an angle θR is defined by its onset
time tR, its speed vR and its brightness bR. We
build up a datacube [v, θ, t] by setting for each ridge
[vR, θR, tR] = bR. Since a CME is a large scale struc-
ture, the onset time and velocity will only slightly
differ from angle to angle. This means that a CME
is represented in the [v, θ, t] datacube as a dense clus-
ter of datapoints. The problem of detecting CMEs
has thus been reduced to identifying clusters in a
3D scatter plot. We simply integrate the [v, θ, t]
cube along the v-direction and identify the location
of clusters in the resulting [θ, t] map (Figure 2).

4. VALIDATION OF THE SOFTWARE

We applied the software to the LASCO data
from April, 27, 1998 to May, 27, 1998. This
month is among the latest months for which
a ’final CME catalog’ exists (http://lasco-
www.nrl.navy.mil/cmelist.html). For the period
mentioned, the catalog lists 71 CMEs of which 4
were halo CMEs. In Figure 2 we show the angular
span and time of occurrence of these catalog CMEs
as dark boxes. The software found 95 events, which
are shown as white elongated regions in Figure 2.
The overal distribution in (angle, time) space is very
similar and the number of CMEs found is of the
same order of magnitude. Comparing the two sets in
more detail is a delicate exercise. The ’success rate’
of our software obviously depends on the tolerance
allowed on the deviations.

Of the 71 catalog CMEs, 19 (27%) are reproduced
with nearly identical time of appearance and angu-
lar location. Allowing for a reasonable tolerance on
the time of appearance (within 3 hours) and on the
angular span (at most 50%), the number of repro-
duced CMEs increases to 53 (75%). In this success
rate we also included cases in which the software
merged events that were listed as separate CMEs.
At the other hand, about 10 catalog CMEs (14%)
are missed completely. The remaining 11% are dis-
putable detections eg when a CME is detected but
the time of appearance deviates more than 3 hours
from the catalog value. For space weather applica-
tions it is important to note that out of the 4 catalog
halo CMEs, 2 are indeed reproduced as halo CMEs.
The remaining 2 are missed because of a data gap
(grey zone in time bar of Figure 2).

The software found 95 cases whereas there are only
71 CME entries in the catalog. Part of the difference
between the two numbers is due to cases in which
different parts of a CME are erroneously detected
as separate events. Yet, we found about 15 (21%)
detections which are ’far from’ any catalog CME.
Some of these are due to false alerts generated by
fast streamer evolution. In at least some cases, our
software has found ’unreported CMEs’. An example

Figure 3. Example of an unreported CME, lifting
off at 19h28 on April 27, 1998 with a speed of about
200 km/s. The subfield shown is 50 degrees wide,
centered around the South direction. There is a 3
hours lapse between the different subfields.
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Figure 4. Comparison of the CME primary speeds
listed in the catalog (horizontally) and a derived
proxy for it (vertically) for those events which are
well recovered by the software.

of such a case is shown in Figure 3. This means that
also the catalogs do not have a 100% success rate.

Each CME detection is collected from ridge profiles
in [r, t] slices along adjacent θ angles in the [r, θ, t]
datacube. This means that we have the velocity
at each point along the detected CME front (Fig-
ure 5). The catalogs only give 1 velocity value called
the ’primary speed’ of the CME. This primary speed
is typically derived from tracking the leading edge.
In contrast, our software tracks the brightest fea-
tures at each angle θ. We have tried to reproduce
the primary speed by calculating a ’derived’ speed
as the average speed (weighted over brightness) of
the ridges along the central 50% of the CME. In Fig-
ure 4 we show that the ’derived’ speed (vertically)
correlates well (linear Pearson correlation coefficient
0.873) with the catalog primary speed (horizontally).
Given the good correlation, the derived speed can be
transformed in an estimated primary speed

vprimary = 1.98 ∗ (vderived − 132)

The catalog also lists the acceleration of the CME.
At the present time, this is not possible yet with the
software since the Hough transform detects ridges
in the [r, t] slices as straight lines. This implicitly
assumes constant velocity CMEs.

5. CONCLUSIONS

This paper shows that it is possible to automati-
cally detect CMEs in coronagraphic images by soft-
ware. The current version of our program processes
1 month of LASCO data in a few hours of CPU time.
In such a run, about 75% of the CMEs listed in the
catalogs are recovered. Note that the ’final’ or ’ver-
sion 2’ catalogs which we compared with, are com-
piled from various sources and have undergone sev-
eral iterations. In addition, the software did detect

Figure 5. [r, θ] image showing the halo CME of April
29. The overplotted, dark, broken line is the detected
CME front. Note that different parts of the CME
propagating at different speeds are correctly tracked.

weak CMEs which were missing in the catalog, so
also the human operators do not have a 100% suc-
cess rate.

Several improvements in the preprocessing module
can still be envisioned and there is hope to reach
a 90% success rate. We assume that the remaining
10% are due to cases of ’intelligent interpretation’ by
the human operator eg with data gaps or with par-
tially corrupted images. Future work will be based
on the generalised Hough transform using parabolas
instead of straight lines to detect the ridges. This will
allow to additionally estimate the acceleration of the
CMEs. We also plan to develop a (near) real time
version of the software that outputs the detected
events directly on the web at http://sidc.oma.be.
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