Ref: ASTROimport-142

The origin of molecular hydrogen emission in cooling-flow filaments

Ferland, G. J. ; Fabian, A. C. ; Hatch, N. A. ; Johnstone, R. M. ; Porter, R. L. ; van Hoof, P. A. M. ; Williams, R. J. R.

published in Monthly Notices of the Royal Astronomical Society, 386, pp. L72-L76 (2008)

Abstract: The optical filaments found in many cooling flows in galaxy clusters consist of low-density (~103cm-3) cool (~103 K) gas surrounded by significant amounts of cosmic-ray and magnetic field energy. Their spectra show anomalously strong low-ionization and molecular emission lines when compared with Galactic molecular clouds exposed to ionizing radiation such as the Orion complex. Previous studies have shown that the spectra cannot be produced by O-star photoionization. Here, we calculate the physical conditions in dusty gas that is well shielded from external sources of ionizing photons and is energized either by cosmic rays or dissipative magnetohydrodynamics waves. Strong molecular hydrogen lines, with relative intensities similar to those observed, are produced. Selection effects introduced by the microphysics produce a correlation between the H2 line upper level energy and the population temperature. These selection effects allow a purely collisional gas to produce H2 emission that masquerades as starlight-pumped H2 but with intensities that are far stronger. This physics may find application to any environment where a broad range of gas densities or heating rates occur. Contains material ┬ęBritish Crown copyright 2008/MoD. E-mail: gary@pa.uky.edu

DOI: 10.1111/j.1745-3933.2008.00463.x
Links: link

The record appears in these collections:
Royal Observatory of Belgium > Astronomy & Astrophysics
Science Articles > Peer Reviewed Articles

 Record created 2016-07-01, last modified 2016-07-01